
IEEE/ACM TRANSACTIONS ON NETWORKING 1

A3D: Adaptive, Accurate, and Autonomous
Navigation for Edge-Assisted Drones

Liekang Zeng , Graduate Student Member, IEEE, Haowei Chen,
Daipeng Feng, Graduate Student Member, IEEE, Xiaoxi Zhang , Member, IEEE,

and Xu Chen , Senior Member, IEEE

Abstract— Accurate navigation is of paramount importance
to ensure flight safety and efficiency for autonomous drones.
Recent research starts to use Deep Neural Networks (DNN)
to enhance drone navigation given their remarkable predictive
capability for visual perception. However, existing solutions either
run DNN inference tasks on drones in situ, impeded by the limited
onboard resource, or offload the computation to external servers
which may incur large network latency. Few works consider
jointly optimizing the offloading decisions along with image
transmission configurations and adapting them on the fly. In this
paper, we propose A3D, an edge server assisted drone navigation
framework that can dynamically adjust task execution location,
input resolution, and image compression ratio in order to achieve
low inference latency, high prediction accuracy, and long flight
distances. Specifically, we first augment state-of-the-art convolu-
tional neural networks for drone navigation and define a novel
metric called Quality of Navigation as our optimization objective
which can effectively capture the above goals. We then design
a deep reinforcement learning (DRL) based neural scheduler at
the drone side for which an information encoder is devised to
reshape the state features and thus improve its learning ability.
To further support simultaneous multi-drone serving, we extend
the edge server design by developing a network-aware resource
allocation algorithm, which allows provisioning containerized
resources aligned with drones’ demand. We finally implement
a proof-of-concept prototype with realistic devices and validate
its performance in a real-world campus scene, as well as a
simulation environment for thorough evaluation upon AirSim.
Extensive experimental results show that A3D can reduce end-
to-end latency by 28.06% and extend the flight distance by up
to 27.28% compared with non-adaptive solutions.

Index Terms— Autonomous drone navigation, edge computing,
dynamic offloading, deep reinforcement learning.

Manuscript received 25 September 2022; revised 12 May 2023; accepted
11 July 2023; approved by IEEE/ACM TRANSACTIONS ON NETWORKING
Editor D. Han. This work was supported in part by the National Science
Foundation of China under Grant U20A20159, Grant 61972432, and Grant
62102460; in part by the Guangdong Basic and Applied Basic Research Foun-
dation under Grant 2021B151520008 and Grant 2023A1515012982; in part
by the Program for Guangdong Introducing Innovative and Entrepreneurial
Teams under Grant 2017ZT07X355; in part by the Guangzhou Science and
Technology Plan Project under Grant 202201011392; and in part by the
Young Outstanding Award under the Zhujiang Talent Plan of Guangdong
Province. A preliminary version of this work has been presented in IEEE
International Conference on Distributed Computing Systems (ICDCS) 2022
[DOI: 10.1109/ICDCS54860.2022.00059]. (Corresponding author: Xu Chen.)

The authors are with the School of Computer Science and Engineering, Sun
Yat-sen University, Guangzhou, Guangdong 510006, China (e-mail: zenglk3@
mail2.sysu.edu.cn; chenhw26@mail2.sysu.edu.cn; fengdp3@mail2.sysu.
edu.cn; zhangxx89@mail.sysu.edu.cn; chenxu35@mail.sysu.edu.cn).

Digital Object Identifier 10.1109/TNET.2023.3297876

I. INTRODUCTION

RECENT years have witnessed a growing deployment of
autonomous drones in various real-world scenarios, such

as search and rescue in natural disasters, smart agriculture,
and smart cities [2], [3], [4]. While the advanced ability
in image/video content perception and analytics has made
Deep Learning (DL) techniques a de-facto standard tool for
visual applications [5], autonomous drones are becoming more
intelligent and serviceable by carrying Deep Neural Networks
(DNNs) for navigation guidance. Specifically, in a typical
DL-enabled flight, a DNN model accepts images captured
by the drone’s camera continuously, and exports a steering
angle and a flying velocity to steer the control of aerofoils,
and therefore reacts to the dynamic physical environments.

While recent progress in DNN models has pushed naviga-
tion accuracy to an unprecedented altitude, deploying them
in the physical world is up against a set of obstacles.
First, the climb of navigation accuracy comes with deeper,
larger, and more sophisticated architectures, which in prin-
ciple accompany heavier workloads and considerable energy
consumption. Running these resource-hungry DNN models
onboard can thus dramatically reduce the available endurance
time of power-limited drones. Second, while existing DL
models have achieved excellent navigation accuracy offline,
the growing inference latency may conversely decline the
navigation quality at runtime. To illustrate that, Fig. 1 presents
an example where a drone is self-flying on city roads. With
an image of a straight road captured at a starting location,
the autonomous drone system may run an inference with its
navigation model to continuously decide a route. However, this
inference task may take a prohibitively long time, resulting
in a delayed right-turn decision at the crossroad (where a
stop sign stands) and thus an unexpected crash and flight
termination as shown in Fig. 1(a). As we measure in different
routes (Sec. II-B), milliseconds of latency can significantly
reduce the performance of navigation. Worse still, lowering
the exceedingly high inference latency is intractable due to the
inherent conflict of computationally intensive DL workload
and constrained computing capability of drones, hindering
high-quality navigation in real deployment.

To overcome these problems simultaneously, in this paper,
we leverage the emerging edge intelligence paradigm [6] and
propose A3D, a dynamic navigation framework that can adap-
tively collaborate drones with edge servers for high-quality
autonomous flight. As illustrated in Fig. 1(b), A3D eases the
drone’s burden by selectively migrating onboard workload
to nearby edge servers, targeting reducing inference latency

1558-2566 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on August 21,2023 at 06:27:10 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4800-8768
https://orcid.org/0000-0003-0751-2773
https://orcid.org/0000-0001-9943-6020

2 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 1. Example scenario of an autonomous drone flying on a city road,
where its expected navigation trajectory is to go straight and then turn right.

for accurate navigation decisions. A3D’s design goes beyond
directly combining offloading with onboard computing for
accelerating execution speed. Instead, it addresses the follow-
ing three challenges.

First, while offloading execution embraces external comput-
ing resources for performance enhancement, it comes at a price
of functional dependence on some environmental factors, such
as network conditions and available edge resources, which can
fluctuate during the flight. On this issue, many edge intelligent
systems aim at optimizing accuracy under the constraint of
latency [7], [8]. However, in autonomous navigation, users
prefer the drone’s autonomy rather than solely latency or
accuracy. As we show in Sec. III-C, latency and accuracy can
affect autonomy in a complex relationship, and viewing them
in a compartmentalized manner may lead to poor autonomy
performance for navigation. Designing new metrics to better
characterize the overall flight performance is called for.

Second, while a new performance metric combining latency
and accuracy may not be hard to derive, mathematically
optimizing the drone navigation process is hard, given that
the environmental dynamics in the navigation routes and edge
networks are uncertain and could have extreme variations.
Besides, different controllable decision variables rooted in
optimizing image transmission configurations and leveraging
edge computing need to be solved simultaneously, enforcing
the problem to be combinatorial, further hindering solving for
the optimal solutions in real time. To address this, we adopt
Deep Reinforcement Learning (DRL) to combat the uncer-
tainty and learn the joint optimization through errors and trials.

Third, directly applying off-the-shelf DRL algorithms is
insufficient for our scenario given that the observable states
in the drone navigation environment construct a large search
space and may contain indirect information that affects deci-
sion making. Therefore, enhanced state abstraction is needed
to encode the raw states into better learnable features rather
than directly feeding the observable ones into the DRL
model. Moreover, the scheduler needs to be implemented in
a lightweight manner so that the scheduling is viable given
that the navigation inference already has potentially large
latency which is why we enable task offloading in the first
place.

To address the challenges, we make the following technical
contributions.
• We make a comprehensive investigation on edge-assisted

navigation model inference for autonomous drones,
revealing the complex nexus between inference latency
and accuracy. To organically combine both metrics,
we treat autonomous navigation as a service and formally
define a novel and comprehensive metric called Quality
of Navigation (QoN), to quantify the overall scheduling

performance. By regarding each navigation decision
inference as a service attempt and setting a threshold
of prediction error, QoN essentially characterizes the
success rate of navigation decision within a time window
of flight so as to capture inference latency and accuracy
simultaneously.

• We develop a DRL-based neural scheduler to learn the
optimal scheduling policy for high-quality navigation
with the goal of maximizing the overall QoN of the
flight. An environmental information encoding module is
additionally designed and incorporated as the front end
into the scheduler. Serving as state abstraction enhance-
ment, it enables the DRL agent to capture the dependency
between different state features and their statistical char-
acteristics in the dynamic environment, improving the
learning efficiency.

• We propose A3D, a novel drone-edge synergetic frame-
work for high-quality autonomous drone navigation with
the assist of edge servers. A3D incorporates the neural
scheduler at the drone side for adaptively scheduling
the autonomous navigation tasks by simultaneously opti-
mizing multiple configuration parameters and the task
offloading decision. At the edge server side, A3D applies
a containerized environment to dynamically allocate edge
resources for individual drones and serve navigation
model inference queries.

Supporting multiple drones. To enable A3D to sup-
port simultaneous multi-drone serving, we further extend our
system design at the edge server with a dynamic resource
allocation mechanism. Specifically, we focus on improving the
average QoN experienced by all connected drones through
distributing proper edge resources for their corresponding
serving containers (which host their navigation models). From
preliminary experiments, we observe that inference queries
with heavier workload (e.g., input images with higher reso-
lution) are more sensitive to resource replenishment, and the
bandwidths between individual drones and the edge server
can be utilized as an indicator to reflect how much they
would like to offload their workload. We therefore leverage
an on-demand strategy and develop an intelligent resource
allocation algorithm that is able to judiciously assign proper
containerized resources at the edge server to drones for global
performance boosting among them.

Performance evaluation. We implement a proof-of-concept
prototype of A3D using realistic testbeds and evaluate its
performance in a campus route. Experimental results demon-
strate that A3D outperforms existing baselines by up to
21.97% QoN improvement and achieves 1.18× flight distance
extension. To complement a thorough evaluation with more
settings, we further implement a simulation environment upon
the AirSim simulator and examine the performance for both
single-drone and multi-drone serving. Our simulation results
show that A3D outperforms existing non-adaptive solutions,
reducing inference latency by 28.06% on average, and extend-
ing flight distance up to 27.28%. The multi-drone simulation
on A3D against existing heuristics shows that our proposed
resource allocation algorithm improves the average QoN by
up to 13.6%, while extending the average flight distance of
drones for at most 42.07m. In addition, A3D’s neural scheduler
(at the drone side) is particularly lightweight, introducing
no more than 5ms running overhead to the navigation run-
time, which can be applicable to other emerging DNN-driven
autonomous navigation scenarios.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on August 21,2023 at 06:27:10 UTC from IEEE Xplore. Restrictions apply.

ZENG et al.: A3D: ADAPTIVE, ACCURATE, AND AUTONOMOUS NAVIGATION FOR EDGE-ASSISTED DRONES 3

Fig. 2. In each control loop, a drone captures an image xt and calls a DNN
model to export a steering angle θt and a collision rate pt, where the latter
yields a velocity vt.

Organization. The rest of this paper is organized as follows.
Sec. II briefly reviews autonomous drone navigation and
investigates the hidden optimization dimension for navigation
performance. Sec. III introduces the proposed QoN metric
and discusses the configuration space and challenges of drone
adaptability. Sec. IV overviews the system design of A3D,
and Sec. V and Sec. VI presents in detail the neural scheduler
at the drone side and the resource allocator at the edge
side, respectively. Sec. VII shows the implementation of our
realistic prototype and simulation environment and Sec. VIII
provides the evaluation results. Sec. IX reviews the related
works and Sec. X concludes.

II. BACKGROUND AND MOTIVATION

A. Autonomous Drone Navigation
With the widely spread of unmanned applications,

autonomous drones have been utilized in a variety of
real-world scenarios ranging from path piloting [9], object
detection [10] to disaster rescue [2], etc. For example,
autonomous drones have been employed in Amazon’s delivery
services [11] for on-demand unmanned product expresses.

At the core of these services, the self-sufficient navigation
model is the fundamental component to enable autonomy.
In particular, we focus on navigating edge-assisted drones,
where the vehicles are committed to flying through a legible
route with the support of ground stations (i.e., edge servers).
As their function heavily relies on accurate environmental
perception, recent advances have applied powerful DNNs as
navigation models to generate flying decisions [12]. Fig. 2
depicts a typical control loop of a DNN-driven navigation [13].
In each operating epoch, a drone scans the frontal landscape
using its camera and passes the captured image xt to the DNN
model for exporting a corresponding navigation decision. Par-
ticularly, the decision comprises two parts. One is the steering
angle θt, which is specified in the turning radian with respect
to the current orientation and will be used to direct the turning
obliquity of aerofoils at the next moment. For instance, a right-
turn command corresponds to a steering angle of π/2 (90◦),
and a left-turn command is exactly −π/2 (−90◦). The other
is the collision rate pt which is used to generate the drone’s
forward velocity vt by linear transformation vt = vmax(1−pt),
where vmax is the maximum drone speed. With the DNN’s
output acting as feedback operating on the drone’s flight
module, the control procedure constructs a closed-loop and
drives the navigation to react to physical world constantly.

B. Hidden Dimensions in Accurate Navigation
One of the most critical requirements of autonomous navi-

gation is safety, demanding a timely and accurate decision in
dynamic environments. However, current work on CNN-based
autonomous navigation ignores the impact of end-to-end
latency on drone navigation performance. As an example,

Fig. 3. The prediction latency has been a hidden dimension that significantly
impacts the optimization of safe and reliable navigation: the delay of naviga-
tion decision at time t0 can yet lead the flying drone to a crash at time t1.

Fig. 4. Left: As the end-to-end latency of navigation decisions increases, the
achieved flight distance dramatically decreases. Right: End-to-end latency of
offloading and local execution, where the offloading latency breaks down in
communication and computation.

Fig. 3 illustrates an initial instant when the drone’s camera
captures an image as t0 and the prospective moment when
the navigation model outputs a decision with respect to that
image as t1. Since the drone actually follows the command
corresponding to input at t0 rather than the real scene at t1,
the navigation decision can be expired, which may lead to a
yaw and even a crash. We thus argue that latency is a hidden
dimension in accurate autonomous navigation, which calls for
joint optimization together with the accuracy metric to ensure
an efficient and secure journey.

The above analysis is further confirmed by quantitative
measurements in AirSim simulator, with results shown in
Fig. 4(left). For each flight tour, we force the inference
latency as a determined value and let the drone fly freely
until it deviates from the expected route. We record the flight
distances upon their terminations, which is a common metric
of navigation performance, and find that the achieved meters
rapidly diminish as the navigation decision latency increases,
across different types of routes.

Note that navigation accuracy can be oblivious of inference
latency if the command from DNNs stays invariant, e.g.,
a constant “go straight” signal in a long straight avenue.
However, real-world cases usually consist of many curves
and crossroads, where any delay of decisions can dramatically
decline navigation precision and the above conclusion holds.

C. Limitations of Existing Solutions
In the context of CNN-based navigation, existing works

typically equip drones with powerful computing devices [9],
[14] or assume stable network connectivity for drones to
nearby servers [13], [15], which is usually unavailable and
unpractical in real-world scenes. Towards lowering the delay
of DNN inference, a number of works center on local com-
puting and alleviate device’s workload by employing smaller
DNN architectures [16] or augmenting devices with hard-
ware accelerators [17]. However, neither of them enables a
farther flight distance in that reducing navigation workload
can decline the steering accuracy, and extending computing

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on August 21,2023 at 06:27:10 UTC from IEEE Xplore. Restrictions apply.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

hardware increases power consumption to the tiny battery.
To utilize supplementary resources without additional onboard
burden, another line of works resorts to offloading workload
to nearby edge servers such as 5G MEC servers. Nonetheless,
their heavy dependence on wireless transmission makes them
highly sensitive to network conditions, which are typically
fluctuating and unstable due to drones’ mobility.

We measure the costs of both ways by computing
DroNet [13], a state-of-the-art drone navigation model, on a
Jetson Nano (as the drone processor) and a desktop PC
(as the edge server), adjusting the bandwidth between them.
As reported in Fig. 4(right), the end-to-end latency of naviga-
tion decision is extremely high (>1.5s) when the bandwidth
is very limited (<100kbps), and is even poorer than that of
local execution on board (0.709s) though they all fail to meet
real-time requirements. Breaking down the costs of offloading
we observe that the transmission stage dominates the entire
performance, implying the exorbitant reliance on networking
conditions. Overall, we observe that both approaches have
their advantages and limitations, presenting a prospective
opportunity to combine them for real-time navigation. This
motivates us to design a joint optimization considering the
nexus of latency and accuracy simultaneously, bridging the
performance gap between local and offloading execution with
adaptive decisions.

III. ADAPTIVE NAVIGATION AS A SERVICE

To characterize the performance of an accurate and adaptive
autonomous drone flight in a more systematic way, we pro-
pose to treat adaptive navigation as a service and study the
navigation performance from a service perspective. Specifi-
cally, we first formally define the quality of navigation and
next discuss the design space and challenges of scheduling
adaptability.

A. Quality of Navigation Metric Design
Service Level Objective (SLO) is widely employed as a

way of quantitative measurement of service performance. For
accurate navigation, we instantiate the SLO as a prediction
error threshold ε in steering angle deviation, indicating the
user’s tolerance in navigation precision. Specifically, for any
time t, given the model prediction on the turning angle as
θt

pre based on the current input image captured at time t and
the ground truth as θt

gt based on the real-scene image at time
t + tdelay exactly, the navigation service should satisfy:

|θt
pre − θt

gt| ≤ ε. (1)

The unit of ε is radian, which directly follows steering
angle’s unit. The smaller the ε is, the stricter requirement the
navigation precision expects.

Next we investigate how many times the navigation decision
meets the SLO within a given time window τ . Particularly,
each time a navigation decision is exported, we regard it as
a service event towards the error threshold ε and check a
successful attempt if Eq. (1) holds and a defectiveness or
else. We can therefore interpret the Quality of Navigation
(QoN) by readily calculating the service success rate, i.e. the
ratio between succeed times and total decision times, formally
defined as:

Q =
τ∑

t=0

I(|θt
pre − θt

gt| ≤ ε)/τ, (2)

Fig. 5. The Quality of Navigation and the flight distance of drones with
different prediction error threshold ε, where we observe that setting ε in
[0.11, 0.13] can achieve the optimal flight distance.

Fig. 6. The prediction errors distribution and the corresponding quality of
navigation in 300 time-slots when the end-to-end latency is fixed at (a) 0.5s
and (b) 1.0s. The dashed line indicates a prediction error threshold of 0.13.

where I(·) is an indicator function that returns 1 if the
predicate feeds a true value. Note that collision rate is highly
correlated with the turning angle since they are generated by
the navigation model with the same input and backbone model,
and hence collision rate is not considered to avoid redundancy
in QoN calculation.

In addition, the hyper-parameter ε in QoN is scenario-
dependent and can be tuned according to some more intuitive
metrics (e.g., flight distance) in practice. In general, ε should
not be set too large or too small, which would make the QoN
not overly sensitive (i.e., close to 0 or π all the time) for
performance optimization. Fig. 5 shows that the appropriate
range of ε for making QoN effective can be [0.11, 0.13] (in
radian) in our case (experimental setup is in Sec. VIII-A).

For autonomous drones, QoN can effectively shape nav-
igation performance in terms of latency and accuracy as it
inspects the statistics of navigation precision over a given time
horizon. To corroborate that, Fig. 6 shows two instances of
different decision latency on the same route with the error
threshold ε = 0.13 and time window size τ = 300. In the
top subfigure where the latency is fixed at 0.5s, only eight
decisions in the period [150, 225] break the SLO, while in
the bottom subfigure with 1.0s latency, there are 18 failed
service events. Although these two cases share the same
navigation model (with the same inference accuracy), their
QoNs respectively log at 80.7% and 70.0%, demonstrating
that our choice of QoN defined in Eq. (2) effectively captures
the prediction accuracy and the effects of navigation latency.

We should emphasize that optimizing QoN does not imply
minimizing the end-to-end latency directly since we also need
to account for the inference quality. For instance, if we always
run the lowest input resolution to minimize the latency, it can
harm the inference accuracy and produce a large prediction
error from the ground truth, leading to a poor QoN.

B. Design Space of Drone Adaptability
Viewing navigation as a service allows us to trade inference

accuracy for lower latency under the bound of error threshold,
and thus improves overall QoN. To achieve such a goal

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on August 21,2023 at 06:27:10 UTC from IEEE Xplore. Restrictions apply.

ZENG et al.: A3D: ADAPTIVE, ACCURATE, AND AUTONOMOUS NAVIGATION FOR EDGE-ASSISTED DRONES 5

Fig. 7. We use DroNet as the navigation model of A3D, which inputs a captured image xt and outputs steering angle θt and collision rate pt for flight
control. We insert a spatial pyramid (SP) pooling layer to the original DroNet, which enables accepting images of dynamic resolutions.

requires the flexible adaptability of navigation scheduling,
where we consider jointly optimizing three key configurations,
including input resolution, inference execution location, and
image compression ratio.

Input resolution. Resizing the input image to a lower
resolution is a common practice to reduce the computa-
tion workload of deep learning models. Existing systems
(e.g., [16], [18]) usually achieve dynamic input resolution by
loading a group of models that accept different input sizes and
switching the execution target at runtime, which may take a
large volume of memory and bring model switching overhead.
To enable dynamic resolution of input images in a lightweight
manner, we intend to enhance prevailing models by leveraging
the Spatial Pyramid (SP) pooling1 mechanism [19]. Fig. 7
exemplifies how it is incorporated into DroNet [13]: we insert
the SP pooling layer in a position where all convolutions
are completed. In our experiments, when using the highest
resolution of 448 × 448, A3D’s navigation model records
merely a tiny accuracy loss of 1% compared to the orig-
inal DroNet. Although SP pooing introduced the execution
overhead of three pooling layers, it is negligible in the whole
model.

Inference execution location. Offloading workload to
nearby edge servers is another mainstream means to reduce
computing latency [20], [21], [22], by utilizing external
resources. In A3D, we regard it as a binary option and will
dynamically optimize the selection of inference execution
location of the navigation model, i.e. on the drone board or
the server. For simplicity, we assume that there is always
an edge server available (e.g., edge servers provided by
cellular operators at base stations) for navigation serving
during the flight, although the network quality between the
drone and edge server may fluctuate. For the case with
multiple servers, we notice that existing literature (e.g, [23],
[24]) has extensively studied strategies for service selection
and migration, which can be easily integrated into A3D as
supporting modules.

Compression ratio. To shrink the transmission overhead
for offloading, images are usually encoded using lossy com-
pression tools before transfer and decoded as it arrives
(JPEG in our implementation). A3D also makes the compres-
sion ratio of this encoding procedure a decision variable to
adjust the input image’s quality and data size, and therefore
tune the tradeoff between inference accuracy and end-to-end
latency.

1The SP pooling is originally used only to expand the receptive field,
but it enables the model to input arbitrary resolution, and the computational
complexity of the model is proportional to the input resolution. Hence, we use
SP pooling to achieve the dynamic input resolution without switching models.

Fig. 8. The navigation model inference accuracy and the total multiply-ac-
cumulate (MAC) operations (left), and the data sizes (right) of input images
in different resolutions.

Fig. 9. The measured quality of navigation varies in different routes with
respect to the changes of resolution (left) and end-to-end latency (right).

C. Challenges of Scheduling Adaptive Navigation

Given the above design space and serviceable objective,
achieving adaptive navigation in high performance is non-
trivial, following three critical challenges.

(1) Composite optimization objective. QoN is a composite
target blending both inference accuracy and latency, while
optimizing these two metrics separately is usually in conflict
under resource constraints. Reducing latency is often at the
expense of accuracy, and improving accuracy often requires
enduring higher latency. To strike a good tradeoff requires a
careful analysis of their relationship, which is challenging.

(2) Complex nexus of schedulable configurations. The
impact of three schedulable dimensions does not indepen-
dently act on the targeted QoN objective, but exhibit in an
assorted manner. For example, centering on the input images,
Fig.8 shows the effect of input resolution and compression
ratio dimensions: the decrease in input resolutions can well
reduce the computing workload in total multiply-accumulate
(MAC) operations (left subfigure) and the data sizes (right sub-
figure), both of which encourage lower latency, and selecting a
smaller compression ratio can further magnify that. However,
they come at the price of accuracy drops, and if the resolution
is too small (e.g. 56× 56), the accuracy can be unusable and
QoN suffers.

(3) Dynamic environmental information. The challenge
of adaptability also lies in the dynamic edge environment
with respect to 1) networking conditions, 2) routes’ navigation
difficulty, and 3) environmental scenes’ changes. Particularly,
we illustrate the latter two factors using measurements on dif-
ferent routes. In Fig. 9(left), we observe that QoN’s sensitivity

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on August 21,2023 at 06:27:10 UTC from IEEE Xplore. Restrictions apply.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 10. A3D architecture overview. Given a series of captured images, the
neural scheduler decides an execution location, and accordingly adjusts the
input image and transfers the frames to the navigation model for flight control.

to different resolutions varies in different routes, indicating that
the inference precisions of their corresponding input image
also vary. In Fig. 9(right), the pattern is analogous where the
achieved QoN data points are in different levels under the
same latency premise in different routes. Overall, as the drone
keeps flying, the physical surroundings are changing, requiring
conscious environmental awareness for adaptive scheduling.

IV. SYSTEM OVERVIEW

To address the above challenges, we propose A3D, an adap-
tive scheduling framework across drones and edge servers
for high-quality autonomous navigation tasks. Fig. 10 shows
the architecture of A3D. First, the onboard computing device
acquires the images captured by the camera and passes them
to the neural scheduler (➊). The scheduler is responsible
for scheduling a system configuration in a design space
comprised of image resolution, inference execution location,
and the compression ratio, targeting maximizing the QoN
performance. In particular, the input image is resized and
compressed (if needed) according to the determined image
resolution and compression ratio, fed as the input to the
navigation model (on the board or the edge server). If the
execution location is instantiated as the edge server according
to the configuration, the compression ratio of the input image
is subsequently adjusted to encode the images, and thereafter
sent to the server for inference (➋, Sec. V). The navigation
model on the server runs in a containerized environment, and is
managed by the container controller (➏). It outputs navigation
decisions and sends them to the flight controller (➌), which
in turn forwards the flight commands to the drone following
the control loop in Fig. 2. During the runtime, the dynamic
profiler (➍) continuously monitors system profiles including
bandwidth b, server computing resources s and navigation
model output θ, p. To support concurrent multi-drone serving,
a resource allocator (➎, Sec. VI) is further developed to
intelligently assign proper computing resources to containers
(corresponding to individual drones). The dynamic profiler
and the state profile are deployed on both the onboard device
and the server, since the navigation model may be executed
alternately on either side. As their profilers only have access
to a portion of the environmental information, the two state
profiles are synchronized periodically to ensure data integrity.

V. NEURAL ADAPTIVE SCHEDULER

Scheduling navigation for real-time, adaptive, and efficient
performance is intractable, provided challenges discussed in
Sec. III-C. What’s worse, the irregularity and non-smoothness
of the targeted QoN objective make the problem non-convex

Fig. 11. In A3D’s DRL-based neural scheduler, an agent observes the
navigation states to decide a scheduling action on the flight environment
and receives a reward based on the quality of navigation. The agent uses
environmental information encoding to model the environment complexity
and dynamics.

and hard to be analytically expressed, leaving existing math-
ematical methodology unavailable for efficient optimization.
Therefore, instead of characterizing connections between vari-
ables and QoN individually, A3D treats the entire system
as a black box and learns to solve the optimization using a
DRL-based neural scheduler. Beyond merely applying off-the-
shelf DRL algorithms, we design an environmental informa-
tion encoding mechanism to reshape the state features, which
turn out to be a better state abstraction for accelerating the
training convergence and promoting the obtained policy.

A. Framework Overview
A3D’s RL framework (Fig. 11) is general and can be applied

to a variety of navigation objectives. Specifically, it intends
to schedule configurations, observe the outcome, and provide
the agent (neural network) with a reward after each action.
We refer to each component as state, action, and reward,
defined in detail as follows.

The state consists of the observable environmental infor-
mation at time t, including the output of the navigation model
(steering angle θt and collision rate pt), bandwidth bt between
the drone and the edge, and edge computing resource st

allocated by the server (measured in available CPU cores).
In summary, the state space is defined as S = ⟨θt, pt, bt, st⟩.

The action should be consistent with the schedulable con-
figurations, i.e. input resolution r, inference execution location
o and image compression ratio j. Namely, the action space is
A = ⟨r, o, j⟩. To reduce the training difficulty and accelerate
the convergence, we discretize the action space, where r ∈
{448 × 448, 224 × 224, 112 × 112}, o ∈ {0, 1} (0 for drone
board and 1 for edge server), and j ∈ {95, 60, 10}. Note that j
and o are coalescent as image compression is available if and
only if offloading is chosen (o = 1). All actions are encoded
in a zero-one vector.

The reward is exactly the optimization objective QoN Q.
In the training process, we measure Q by Eq. (2) after every
DRL step. The size of the time window τ is equal to the
length of a DRL step, which is set to 5s in our case, such that
the QoN is averaging approximately 17 times of navigation
inferences for each policy update in the DRL training. Note
that the computation of QoN at the runtime is not required,
since the DRL agent will output the action based on the state
directly.

B. Environmental Information Encoding
Applying neural networks as the agent enables the DRL

scheduler to possess the ability of fitting nonlinear functions,
and thus can learn the relationships between the variables and
the objective, addressing Challenges (1) and (2). However,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on August 21,2023 at 06:27:10 UTC from IEEE Xplore. Restrictions apply.

ZENG et al.: A3D: ADAPTIVE, ACCURATE, AND AUTONOMOUS NAVIGATION FOR EDGE-ASSISTED DRONES 7

Fig. 12. The quality of navigation declines as the environment complexity
(left) and the environment dynamics (right) increase. Their Pearson correlation
coefficients are −0.835 and −0.826, respectively.

to support the scheduler to process environmental information
dynamically, i.e. Challenge (3), it requires further enhance-
ment in identifying input difficulties, and we develop an
Environmental Information Encoding (EIE) module to deal
with that.

The core of EIE is two knobs that reflect the properties of
captured images. The first is environment complexity c that
characterizes how sensitive the QoN is to the change of input
resolutions. Formally, we define c as a weighted sum of the
navigation decisions’ variants in different resolutions:

c = |θhigh − θlow|+ α|phigh − plow|, (3)

where α is a hyper-parameter that keeps |θhigh − θlow| and
|phigh − plow| at the same order of magnitude, and the
subscripts indicate results corresponding to images in the
highest and lowest resolutions, respectively. In A3D, we use
a profile-based approach to measure c at system idle time:
first record the navigation model’s outputs with images in
448×448 and 112×112, then calculate ct according to Eq. (3).

The second is environment dynamics d that characterizes
how rapidly the content of captured images changes. This
indicator induces the expiration time for the current navigation
decision, implying the urgency of optimizing inference latency.
We therefore define d using the distributional divergence of θ
and p within the latest navigation epoch:

d = σ(θ) + βσ(p), (4)

where σ(·) reckons the standard deviation and β is a hyper-
parameter. The rationale behind Eq. (4) is to regard the model
output as a descriptor of the image, where the degree of
model output’s variation can induce the degree of image
content’s variation, i.e. environmental changes. Estimating d
only needs to record navigation decisions at runtime and does
not introduce additional overhead.

We verify the effectiveness of the above two definitions
on the Mid-Air dataset [25], by recording the environment
complexity and dynamics, as well as the achieved QoN,
in every-5s time slots. Fig. 12 shows the data points, where we
fix the resolution at 224×224/448×448 and latency at 0s/0.5s,
respectively. Visualized results show the evident correlation
between environment complexity c and the degradation of
QoN: the larger c is, the more complex the environment is,
and thus the smaller value QoN logs. The same pattern also
holds for environment dynamics d, demonstrating their ability
in shaping environment properties. Statistically, the Pearson
correlation coefficients are −0.835 and −0.826, respectively,
indicating a strong negative tendency between the targeted
QoN and c (d). Hence, with the EIE mechanism, state S of
the DRL agent at time t is refined as ⟨ct, dt, bt, st⟩ without
directly using θ and p.

C. Training
A3D’s neural scheduler employs the Actor-Critic algorithm

(A2C) [26] for training, which combines a value-based
algorithm and a policy gradient-based algorithm. We select
it because of its advantages of low inference latency and fast
training convergence as we will show later in Sec. VIII-F.

To speed up the training process, we construct a numerical
simulation environment to train the DRL agent. We use
Mid-Air [25], a drone flight video streaming dataset that
lasts for 80 minutes and contains about 420,000 frames
covering multifarious weather conditions and environments.
We employ the publicly-available wireless bandwidth traces
dataset HSDPA [27] to simulate the fluctuations of networking
conditions during flight.

We use the Jetson Nano as an onboard computing device
to measure the computing latency of the navigation model for
different resolution inputs. We assume that these latency data
are constant at runtime, and use the measurements as runtime
data to construct a drone simulation environment.

Furthermore, we use offline data to speed up training,
generating predictions of the navigation model θ, p for all
420,000 frames using all scheduling decisions defined in the
action space beforehand and recording in a table. During
the DRL training, we directly look up corresponding results
from the table and consequently save the navigation inference
time. By doing so, our simulation allows the DRL agent to
“experience” 80 minutes of flight in 10 minutes.

VI. SUPPORTING MULTIPLE DRONES

The neural scheduler introduced in Sec. V allows individual
drones to adaptively decide whether to resort to the edge
server’s assistance for accurate navigation. However, while a
swarm of drones flies around and separately sends offloading
queries, the edge server is obliged to serve multiple DNN mod-
els and infer their navigation decisions. In this circumstance,
existing literature usually considers a buffering strategy, which
accepts serving queries in a queue and processes them with
exclusive, sufficient resources in a streaming manner. Although
it can substantially alleviate resource contention, the delay and
overhead caused by buffering are problematic. On the one
hand, the buffering process necessarily prolongs the end-to-end
latency perceived by the drone (when the offloading decision
is applied), which severely damages the responsiveness and
efficacy of the edge-assisted solution. On the other hand,
learning a DRL model (neural scheduler) to assure a steady,
content reward toward the QoN objective becomes much more
challenging given the buffering delay, which is hard to be
predicted and maintained. Therefore, we instead leverage a
concurrent serving principle at the edge server that adaptively
assigns proper edge resources for individual drones and serves
them simultaneously. In what follows, we will explain the pro-
posed network-aware resource allocation algorithm in detail.

A. Resource Allocation for Multiple Drones
The functionality of edge resource allocation is accom-

plished by the resource allocator (Fig. 10 ➎) at the edge
server, operating upon the container controller. Its objective
is to maximize the global drone performance, quantified
by the average QoN of all served drones. To schedule a
proper resource allocation solution is non-trivial, given the
following challenges. First, the resource demand for naviga-
tion may differ across individual drones, since their system

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on August 21,2023 at 06:27:10 UTC from IEEE Xplore. Restrictions apply.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 13. Left: The navigation model inference latency as a function of
available edge resources. Right: The offloading ratio approximately grows in
a logarithmic trajectory as the bandwidth increases.

configurations on image resolution, execution location, and
compression ratio may vary on the fly. This attributes to
many factors, e.g., their captured images are different when
flying at different routes and heights, and their local computing
resources and networking conditions are also diverse. Second,
the actual demand for edge resources is unknown apriori, and
is implicitly intertwined with the allocated volume of edge
resources. To be more specific, the computational workload at
the edge server highly depends on the system configuration A
(e.g., the image resolution) determined by the neural scheduler,
which contrariwise relies on the input state S that comprises
the allocated edge resource s. Third, serving a group of
drones concurrently may lead to critical resource contention
for navigation model inference, given that edge servers are typ-
ically with a relatively moderate scale of computing resources
(compared to the powerful cloud datacenters). Such resource
shortage can lead to serious performance degradation, which
may conversely hinder the drones’ QoN.

To explore how allocated resources impact flying perfor-
mance, we examine the navigation model inference latency
on the edge server by varying the assigned CPU cores to the
corresponding container (in a granularity of 0.1 virtual CPU
cores). Fig. 13(left) depicts the results with input images in dif-
ferent resolutions, where we remark three observations. First,
with more resources the inference latency gradually lowers,
showing the clear benefit of resource replenishment for all res-
olution settings. When increasing CPU cores from 1 to 10, the
navigation model inference achieves at most 26.5× speedup
(for 448 × 448 resolution). Second, inference queries with
different input image resolutions exhibit differentiated sensi-
tivity to the resource variation. A higher-resolution workload
(e.g., 448×448) gains a larger latency reduction with the same
resource supplement. Third, the performance gap between the
resolution settings shrinks as the edge resources become more
abundant. If the CPU cores are adequately ample (e.g., >10),
the inference latency even appears a convergence and the
benefit of adding more cores marginally diminishes. This
inspires us that allocating resources in the middle region
(e.g., [4,8] in Fig. 13(left)) can maximize the edge resources
utilization. Besides, we can assert that a trivially random or
equal allocation cannot sufficiently meet the service require-
ment, where an on-demand solution that aligns the need for
drone queries and edge computing resources is desired.

Designing such an on-demand solution, however, necessi-
tates an effective estimation of drones’ reliance on the edge
server, which is hard to predict accurately. Instead of applying
a precise but prohibitively expensive estimation approach,
we observe that the networking condition, i.e., bandwidth, can
be utilized as a general indicator to reflect drones’ reliance on
edge. The rationale behind is that with higher communication
bandwidth, the drone is more likely to offload its computation
to the edge server. To validate that, we experiment with the

Algorithm 1 Network-Aware Resolution Allocation
Algorithm
Input:
⟨b1, b2, · · · , bn⟩: The measured bandwidths between
drones and the edge servers
R: Trained regression model that maps bandwidth to an
offloading ratio
h, l: The upper and lower bounds for resource allocation

Output:
⟨s1, s2, · · · , sn⟩: The allocated edge resources for drones

1: /* - - - Initialization - - - */
2: ⟨f1, f2, · · · , fn⟩ ← R(⟨b1, b2, · · · , bn⟩)
3: Calculate si according to Eq. (5)
4: /* - - - Bounded reallocation - - - */
5: Construct a set Ψ with the elements si in ⟨s1, s2, · · · , sn⟩

such that si > h and assign si ← h
6: Calculate the resource surplus S+ by Eq. (6)
7: Construct a set Φ with the elements si in ⟨s1, s2, · · · , sn⟩

such that si < l and assign si ← l
8: Calculate the resource shortage S− by Eq. (7)
9: Θ← ⟨s1, s2, · · · , sn⟩ −Ψ− Φ

10: while True do
11: ∆S ← S+ − S−

12: if ∆S < 0 then
13: Find the least element smin in Φ and set smin ← 0
14: S− ← S− − l
15: else
16: Assign ∆S to the elements in Θ proportionally
17: Break
18: end if
19: end while
20: return ⟨s1, s2, · · · , sn⟩

proposed neural scheduler by adjusting the bandwidth b and
logging the average offloading ratio within a period, which
yields the results in Fig. 13(right). We witness that the higher
the bandwidth, the higher possibility the drone would offload
its workload. More surprisingly, the recorded data points of
the offloading ratios exhibit a logarithmic tendency (plotted in
the curve in Fig. 13(right)), indicating a logarithmic regression
model can approximately map the profile-friendly networking
conditions to the allocation-related offloading ratio.

Summarizing the above observations motivates us to design
an on-demand strategy that leverages the bandwidth as a knob
and allocates edge resources to match the drones’ demand.

B. Network-Aware Resource Allocation Algorithm
The key idea of the proposed resource allocation algorithm

is a two-phase scheduling: first initialize a resource allocation
solution via the estimated offloading ratio, and next refine it
by aligning in a proper interval. Algorithm 1 shows the pro-
cedure, where its input includes 1) the measured bandwidths
⟨b1, b2, · · · , bn⟩ between drones and the edge server, 2) the
trained regression model R that can map a given bandwidth bi

to the estimated offloading ratio fi, and 3) the operator-defined
upper bound h and lower bound l for resource realloca-
tion. The expected output is the allocated edge resources
⟨s1, s2, · · · , sn⟩ for individual drones.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on August 21,2023 at 06:27:10 UTC from IEEE Xplore. Restrictions apply.

ZENG et al.: A3D: ADAPTIVE, ACCURATE, AND AUTONOMOUS NAVIGATION FOR EDGE-ASSISTED DRONES 9

Algorithm 1 begins at the first phase that calls the regression
model R to estimate the offloading ratio ⟨f1, f2, · · · , fn⟩ for
all drones, taking the profiled bandwidth as input. With these
estimations, we initialize a preliminary allocation in proportion
to the drones’ offloading possibilities, using Eq. (5):

si = λ
fi∑n

j=1 fj
, (5)

where λ is the amount of available resources at the edge
server. Next, the algorithm enters the second phase for allo-
cation refinement. In particular, it first finds the elements in
the current solution ⟨s1, s2, · · · , sn⟩ that have values out of
the interval [l, h]. For the elements with values higher than the
upper bound h, we collect them in a set Ψ and reassign their
values exactly with h. Meanwhile, we calculate the resource
surplus S+ derived from the above reassignment by Eq. (6)
(line 5-6). Similarly, for the elements with values smaller than
the lower bound l, we repeat the same procedure with Eq. (7)
and obtain a set Φ and the resource shortage S− (line 7-
8). We count the unchanged elements by filtering the current
solution with Ψ and Φ, denoted in a set Θ.

S+ = |
∑

sj∈Ψ sj − |Ψ| · h|, (6)

S− = |
∑

sj∈Φ sj − |Φ| · l|. (7)

The algorithm then dives into an iteration that intends
to generate a valid allocation after the above reassignment.
To gauge how much resource is remained, we reckon the
difference between S+ and S− and obtain ∆S. If ∆S < 0, the
allocation meets a resource deficit. To ensure a valid solution,
we select the least element in Φ and reset it to 0, which
implies that the edge server will not allocate resources for
the corresponding drone. The rationale behind is that with
fewer edge resources the drone is less possible to offload its
workload, and even if it decides an offloading configuration,
the inference latency on the edge side will be too high
to satisfy the navigation service (as in Fig. 13(left)). After
dropping this drone’s service, its originally owned resource is
released and can be used for further reallocation (in another
iteration of the loop). If ∆S ≥ 0, there are still spare resources
available for allocation, so we assign ∆S to the elements in
Θ in proportion to their offloading ratios and break the loop
(line 16-17). The algorithm terminates by returning the final
allocation ⟨s1, s2, · · · , sn⟩.

Algorithm 1 takes O(n) time complexity with n drones.
Given that the amount of drones in a swarm is typically several
or tens, the algorithm is lightweight and can run efficiently,
which allows fast and agile edge resources scheduling during
the edge server’s runtime. The selection of the bounds h and
l is given by the system operator, which can be flexibly tuned
to accommodate the navigation model’s performance, the edge
server’s capability, as well as the input image’s complexity.

VII. IMPLEMENTATION

With all the above designs, we explain our implementation
in this section, in terms of the proof-of-concept prototype and
the simulation environment.

A. Prototype Implementation
We implement the hardware platform of A3D as shown in

Fig 14: we select the Holybro PX4 Vision Development Kit,
a mature commercial product widely used by the community,

Fig. 14. The drone and the employed edge server used in our prototype
implementation, communicated via a wireless connection. The drone equips
with an UP Core as its core processor.

Fig. 15. The 300m real-world route used in our prototype experiment locates
at the campus.

as the drone. The kit contains a near-ready-to-fly carbon-
fiber quadcopter equipped with a Pixhawk 4 flight controller,
UP core companion computer, and the Occipital Structure
Core depth camera sensor. The workstation equipped with
an Intel Xeon(R) W-2145 CPU is not only emulated as the
edge server but also functioned as the ground station of the
flying drone. The drone kit provisions the external antenna
to enable the wireless connection between the drone and the
ground station, and the maximum bandwidth of the WiFi
connection between the companion computer and the edge
server is around 54 Mbps by means of actual measurement.
It is noteworthy that we abandon the integrated PX4 obstacle
avoidance in this vehicle and we mainly exploit the poten-
tial of the captured RGB images rather than the RGBD
images.

We utilize the drone to conduct the real-scenario
autonomous navigation on a campus route illustrated in Fig 15.
This route is composed of several straights and turns, and the
main pavement is obvious and flanked by green belts aside.
The total distance of the path is approximately 300m and
some important turns and spots are shown in Fig 15. The PX4
flight controller provides the offboard flight mode to assign
the control of the vehicle to the companion computer [28].
The companion computer can transform the expected flight
instructions into the MAVLink message to control the drone
at the hardware level.

B. Simulation Implementation
To make a thorough evaluation with more settings, we use

the AirSim [29] platform for simulation. The benefits of
simulation lie in that it has no damage to the equipment and
high reproducibility of experiments. AirSim is developed by
Microsoft based on Unreal Engine 4 (UE4). AirSim provides
APIs to interact with drones in the simulator. Specifically,
the simGetImages method is used to obtain the camera
images, the simGetVehiclePose method is used to obtain

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on August 21,2023 at 06:27:10 UTC from IEEE Xplore. Restrictions apply.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 16. A3D integration with AirSim simulator. The prototype connects the
drone board (Jetson Nano) and the simulation platform with a data bus and
develops a wrapper to manage all simulation data through AirSim API.

Fig. 17. The used 1200m coastline route in our simulation covers various
types of scenes including straight roads, curves, and tunnels.

the drone’s pose, and the moveByVelocityZAsunc method is
used to specify the drone’s flight speed and turn angle.
In addition, AirSim provides functions to change the weather
conditions and sun angle to simulate various environmental
conditions.

Fig. 16 shows the A3D integration with AirSim simulator.
AirSim runs on a separate simulation platform. The simulator
wrapper is responsible for calling the AirSim API, forwarding
captured frames and flight commands, recording experimental
data, and implementing manual control of the simulator. The
drone board is connected to the simulation platform via an
Ethernet connection with negligible transmission delay to sim-
ulate the connection between the onboard computing device
and the real drone. WiFi connection is used between the drone
board and edge server for wireless communication. Bandwidth
measurements are implemented by psutil [30] and iperf3 [31].
All modules in A3D communicate using ZeroMQ [32].

We use a scenario called “Coastline” in AirSim, which
contains an approximately 1200m road with 16 turns and
its typical scenes are shown in Fig. 17. We use a Jetson
Nano as the onboard computing device and a workstation
with an 8-core 3.7GHz Intel CPU and 16G RAM as the
edge server. To align with the GPU-free platform targeted
in DroNet’s design [13], only the CPU processor is used
in evaluation, emulating the status of resource-constrained
edge-assisted drones. Additionally, we manually adjust the
drone-server bandwidth based on HSDPA [27], a dataset that
collects realistic bandwidth measurements on mobile devices,
to simulate drones’ wireless network fluctuations.2

2Wireless signal collisions in multi-drone serving are assumed to be well
managed and addressed by underlying communication protocols, and have
been accommodated in the bandwidth traces. In real-world deployment, one
can exploit existing techniques on channel orchestration (e.g., [33], [34]) to
enhance A3D for addressing potential wireless signal collision issues.

VIII. EVALUATION

A. Experimental Setup

Metric. Our evaluation is carried out in both the proof-
of-concept prototype and simulator experiments, in order to
thoroughly examine the performance of A3D. In particular,
we mainly focus on the following metrics to investigate A3D’s
design and optimization. 1) Quality of Navigation (QoN).
We take the predictions of the navigation model corresponding
to the configuration of zero end-to-end latency, the highest
resolution (448 × 448), and the basic image compression
ratio (95%) images as the ground truth, and use Eq. (2)
to calculate the QoN. The ground truth represents the best
performance that the employed navigation model can achieve
in the most ideal case, so the measured QoN reflects the
performance gap between the actual execution and the ideal
case. 2) Flight distance, a widely-used performance indicator
of drone autonomy that refers to the total distance flown by the
drone from the location it takes off to the location it safely
lands or deviates from its course. We repeat the flight five
times to average the recorded distance. 3) End-to-end latency,
the elapsed time from the image capture to the flight command
determination. Although the end-to-end latency is not our
direct optimization objective, it has a significant impact on
our targeted QoN performance.

Parameters. The prediction error threshold ε for calculating
QoN is set to 1 for the prototype and 0.13 for the simulation.
The time window size τ is fixed at 5s, which is equal to the
length of a DRL step. For the hyper-parameters in the EIE
module, α and β are set to 0.3 and 0.09 respectively. When
training the DRL neural scheduler, we set the length of an
episode to 100s, the initial learning rate to 7× 10−4, and the
discount factor γ to 0.99. h and l are set 4 and 0.8, respectively.

Baseline. We design commonly-applied heuristics as base-
line strategies for single-drone and multi-drone naviga-
tion, respectively. For single-drone evaluation, the baselines
include: 1) Local, which is a non-adaptive approach that places
the navigation model on the onboard computing device for
execution at any moment, using a fixed resolution (448×448).
This is the most common approach when the drone can carry
a computing device with sufficient computation capability.
2) Offload, which is also a non-adaptive approach that places
the navigation model on the server for execution at any
moment, using a fixed resolution (448 × 448) and a fixed
image compression ratio (95%). This is a common approach
when the drone has insufficient computation resources and can
communicate with the server via a stable network connection.
3) Dynamic Offload (Dynamic). We collect experimental data
to estimate the computing latency at the local or the edge, and
decide the execution place by directly optimizing the end-
to-end latency. This approach merely optimizes the latency
dimension by adapting the inference execution location con-
figuration but still uses a fixed resolution and compression
ratio.

For multi-drone evaluation, the baselines are: 1) Contention-
Agnostic (Agnostic), where drones are unaware of the exis-
tence of each other and their neural schedulers always accept
the whole amount λ as the obtained edge resources st,
i.e., each drone “believes” that it completely possesses the
whole edge resource pool. However, the edge server will keep
monitoring the connected drones at every moment and evenly
allocate CPU cores for them. 2) Even, which consistently
assigns edge resources in equal proportion to every connected

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on August 21,2023 at 06:27:10 UTC from IEEE Xplore. Restrictions apply.

ZENG et al.: A3D: ADAPTIVE, ACCURATE, AND AUTONOMOUS NAVIGATION FOR EDGE-ASSISTED DRONES 11

Fig. 18. Prototype evaluation results.

drone, and the drones are informed of such an even allocation
results. 3) w/o Bounds, an ablated version of A3D’s resource
allocation algorithm that only runs the initialization phase to
generate an allocation solution.

B. Prototype Verification
This subsection presents our experimental results on our

proof-of-concept prototype in a campus route (Fig. 15).
Fig. 18(a) depicts the complexity of this route and the
measured inference latency of the navigation model when
executing at the drone board locally and the edge server. For
each flight tour, we set the inference latency as a determined
value and let the drone fly freely until it turns off track,
following the same methodology in Fig. 4’s setting. From
the figure, we observe that the accomplished flight distance
dramatically diminishes as the navigation decision latency
increases. If the drone computes the navigation decisions by
itself, it flies around 140m, while a pure offloading solution
attains a similar meterage. In particular, if the end-to-end
latency reaches 0.9s, the drone yaws at the beginning, implying
that it fails to pass the first bend at the starting point.

We next investigate the distribution of navigation model
prediction accuracy and end-to-end latency within the flight
period and plot the results in Fig. 18(b) and Fig. 18(c). Local
and Offload hold much more significant prediction errors due
to the high end-to-end latency. Dynamic method decreases
the prediction error by simple optimization while A3D retains
the lowest prediction error by comprehensive optimization
towards QoN. As for the latency, the real-life experiment
results maintain strong consistency with that in simulation
(Sec. VIII-C). The latency of Local is distributed around
588ms because its computing only relies on the onboard pro-
cessor. Offload is highly affected by the wireless drone-edge
connection and its latency measurements has the most sig-
nificant variance. Dynamic switches its execution location
concerning the latency and approximately records the lower
bound of Local and Offload. By contrary, A3D holds the lowest
end-to-end latency owing to its ability of jointly adjusting
configurations in the design space of scheduling adaptability.

Fig. 18(d) displays A3D’s achieved QoN at different max-
imum flight speeds against baselines. We set the prediction
error threshold ε as 1 to maximize the expressiveness in
the real-life environment. The figure shows that A3D clearly
obtains the highest QoN among other approaches across
different maximum speeds. Specifically, A3D improves the
QoN by up to 21.97% compared to Local. The faster the
speed is, the more performance improvement the A3D gains.
This is because higher flight speed introduces faster scenarios
transition, emphasizing the necessity of lower end-to-end

Fig. 19. The campus route and the termination location of different
approaches in our prototype evaluation. A3D successfully passes the complete
route and safely reaches the destination.

latency. The QoN of A3D shows little changes with various
maximum flight speeds since A3D’s adaptive configuration
can significantly mitigate the latency issue, demonstrating its
practicability.

Fig. 19 visualizes the termination locations of the four
approaches. Local yaws to the right too late because of the
high inference latency on the device and fails to pass at the
second 90-degree bend. Offload holds a similar flight distance
as Local and it also cannot pick a proper moment to turn
around. Dynamic succeeds to conquer the second turn owing
to its adaptability to choosing the execution location. However,
this method is empirical and environment-agnostic, resulting
in the yaw when meeting consecutive bends. A3D keeps the
superior performance and manages to fly the complete route
while the others fail halfway. This attributes to A3D’s neural
scheduler that can adaptively adjust system configurations to
strike a balance in the latency-accuracy tradeoff.

C. Performance Comparison With Single Drone
This subsection evaluates A3D in our simulation testbed

under single-drone settings. To demonstrate the effectiveness
of our proposed QoN metric, we further compare an ablated
version of A3D, marked as A3D w/ Lat., by training the
DRL scheduler using latency as the reward. First, we assess
the performance of A3D in different bandwidth conditions.
We pick four bandwidth traces in the dataset [27], which
collect real-world traces and are labeled in Fig. 20(a) as B1,
B2, B3, and B4, respectively. As shown in Fig. 20(b), A3D
achieves the highest QoN across all bandwidth conditions.
When the bandwidth decreases, Offload’s QoN decreases
significantly, which is caused by the rise in transmission delay.
In contrast, Local is independent of bandwidth as it isolates
drones from edge servers. Dynamic’s QoN is always slightly
higher than the local and offload baselines, suggesting that

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on August 21,2023 at 06:27:10 UTC from IEEE Xplore. Restrictions apply.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 20. Single-drone evaluation results.

dynamically choosing whether to offload or not can improve
performance. However, since Dynamic does not adjust its
choice of resolution and image compression ratio, it fails to
reach the same performance improvement as A3D. Fig. 20(c)
shows the end-to-end latency of these methods, where A3D w/
Lat.’s results are always the lowest since it directly optimizes
latency as the scheduling objective. As for the original A3D
trained with QoN, its latency is reduced by 28.06% compared
with Dynamic at B4, indicating that A3D can intelligently and
jointly adjust the offloading decision, image resolution, and
compression ratio so as to strike a better balance between
accuracy and latency.

We next evaluate the performance of A3D at different
flight speeds. We set the maximum drone speed vmax to
1.5m/s, 3m/s, 4.5m/s, and 6m/s respectively, and the results
are shown in Fig. 20(e) and Fig. 20(f). A3D achieves a
higher QoN of navigation than baselines at all speeds, and
is able to improve the QoN by 4%-12%. The faster the speed,
the greater the A3D’s improvement gains. Fig. 20(f) shows
the results on flight distance. Specifically, A3D is able to
achieve a 5.68%-27.28% improvement, which is greater than
the QoN improvement shown in Fig. 20(d). The reason is
that the drone is less fault-tolerant at higher speeds and a
few prediction errors can cause the drone to deviate from
its course, meaning the principle of minimizing prediction
errors in A3D can validly improve flight distance. Both the
two figures indicate a tight correlation between flight distance
and QoN, demonstrating that using QoN as the reward can
provably improve drones’ flying ability.

We further investigate the distribution of each metric.
Fig. 20(g) shows the Cumulative Distribution Function (CDF)
of end-to-end latency for the B3 trace in Fig. 20(b). The
latency of Local is distributed around 700ms since it only
uses the dedicated onboard resource. Offload’s latency rises
significantly when the bandwidth is low and thus a proportion
of its distribution lies at a higher level (>750ms). Dynamic’s
result is the lower bound of Local’s and Offload’s, but it
is still much higher than A3D’s because A3D can reduce
the latency by adjusting images’ resolution and compression
ratio. Fig. 20(h) shows the CDF of the navigation model’s

prediction errors at the steering angle for the B3 trace. A3D
can achieve lower prediction errors than baselines, consistent
with the results above. Interestingly, while A3D falls short in
latency performance compared with A3D w/ Lat., it achieves
better prediction performance in Fig. 20(h), which implies the
optimization tradeoff implicated in the QoN metric.

D. Performance Comparison With Multiple Drones
This subsection examines A3D’s resource allocation

algorithm in our simulation testbed under multi-drone settings.
Specifically, we use four Jetson Nanos to emulate four drones,
and accordingly launch four UAV instances in AirSim. Their
maximum flight speed is fixed at 3m/s, and their networking
conditions towards the edge server follow the bandwidth traces
B1, B2, B3, and B4 in Fig. 20(a), respectively. An experiment
trial is finished when one of the drones yaws on the route, and
their average performance measurements are recorded as the
results.

Fig. 21(a)-Fig. 21(d) displays A3D’s performance in dif-
ferent dimensions: QoN, flight distance, end-to-end latency,
and offloading ratio. In particular, Fig. 21(a) and Fig. 21(b)
show that A3D always yields the highest QoN and flight
distance over other counterparts, achieving up to 13.6% QoN
improvement and extending the average flight distance of
drones for at most 42.07m. In contrast, the Agnostic approach
records a poor performance across setups, and the gap between
it and A3D widens when assigned CPU cores are fewer.
This reveals the necessity of the resource allocator module,
especially when edge resources are limited. Even approach
performs better than Agnostic, but still falls short compared
to A3D and its ablated version (w/o Bounds). The difference
between A3D with and without bounds is small when edge
resources are abundant (geq10 CPU cores). This is because
with more edge resources the initialized allocation usually
has satisfied the requirement of a bounded interval, and does
not need the bounded reallocation phase anymore. Conversely,
in an edge server with limited edge resources, the bounded
reallocation can effectively align resource allocation to avoid
resource waste and thus boost global performance. The end-
to-end latency results in Fig. 21(c) exhibit a strong correlation

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on August 21,2023 at 06:27:10 UTC from IEEE Xplore. Restrictions apply.

ZENG et al.: A3D: ADAPTIVE, ACCURATE, AND AUTONOMOUS NAVIGATION FOR EDGE-ASSISTED DRONES 13

Fig. 21. Multi-drone evaluation results.

with results in Fig. 21(a), where A3D continuously attains
the lowest latency within the flight. This also reflects better
resource utilization of A3D against other baselines. Fig. 21(d)
plots the offloading ratios of different approaches during the
flight, which calculates the percentage of offloading period
out of the total flight period. For Agnostic approach, the
offloading ratio logs in a high level because its perceived edge
resource is always the amount of the resources in the edge
server. However, it does not translate frequent offloading into
a high QoN in Fig. 21(a), because the actual resources that the
drone can utilize are inconsistent with what they see and are
impacted by potential contention. For other approaches, their
comparison on offloading ratio appears in a similar pattern
to that in the QoN dimension, where A3D with the highest
offloading ratio witnesses the highest QoN. By judiciously
allocating resources for drones, A3D can encourage the drones
to utilize the edge server’s assist and consequently promote the
overall system performance.

Fig. 21(e) and Fig. 21(f) respectively depict the CDF of
the prediction errors and the end-to-end latency of all drones
during the whole flight. In Fig. 21(e), we observe that the four
approaches have close trajectories of prediction errors, while
in Fig. 21(f) A3D’s latency distribution is clearly lower. This
validates the results in Fig. 21(a) and Fig. 21(c), where A3D
outperforms other baselines for all cases.

To further investigate the performance of A3D’s resource
allocation with more drones, we carry out numerical simula-
tions using the data traces collected from real drones. We fix
an amount of edge resources at 12 CPU cores and vary the
number of drones from 1 to 15. Fig. 21(g) and Fig. 21(h)
give the QoN and offloading ratio results, respectively. For
Agnostic, its resource information blindness implies the incon-
sistency between how much resource drones require and how
much resource edge servers provide, and can thus result in
resource contention at the edge server. As the number of
drones grows, the resource contention becomes increasingly
intensive and therefore Agnostic’s QoN drops quickly. Even
approach enforces all drones to share equal opportunities to
edge resources and allows them to see how much they will
obtain. Under this mechanism, each drone’s obtained resources

shrink with the system connecting more drones, which reduces
the possibilities of their offloading decision (as indicated in
Fig. 21(h)), wastes edge resources, and thereupon lower their
achieved QoN. In contrast to Agnostic and Even, w/o Bounds
can estimate the demand of each drone based on their server
connectivity, and accordingly assign edge resources in an on-
demand manner. However, without the bounded reallocation
phase in A3D’s algorithm, this approach may still lead to
inefficient resource utilization since the benefit of resource
supplement diminishes marginally as illustrated in Fig. 13(a).
In Fig. 21(g), though its performance is on par with A3D when
the number of drones is small (<6), its QoN results go closer
to Even when the number of drones grows. By contraries, A3D
employs a bounded reallocation to drop a part of services to
ensure the QoN of remaining drones, which yet achieves better
global system performance. Fig. 21(h) shows the offloading
ratio with varying number of drones. As the drones in Agnostic
are only aware of a constant edge resource λ, its offload-
ing ratio results is independent of the number of drones.
For Even and w/o Bounds, their offloading ratio quickly
descends, implying a tendency of using on-board computing
resources. A3D’s offloading ratio is higher than Even and
w/o Bounds, which demonstrates a better resource efficiency
and confirms the superior QoN in Fig. 21(g) over other
counterparts.

E. Adaptability
This subsection investigates how A3D makes dynamic

decisions to adapt to the environment. Using A3D (with its
ablated version) and three baselines, we perform a flight of
350s long in AirSim simulator with a maximum flight speed
limited to 3m/s. When the drone deviates from its course,
we manually control the drone to return to the correct direc-
tion. Fig. 22(a) shows the bandwidth trajectory of the entire
flight. Fig. 22(b) and (c) show the fluctuation of Environment
Complexity and Dynamics (defined in Eq. (3) and Eq. (4),
respectively). Fig. 22(d), (e), and (f) illustrate the selection
of three decision variables of A3D, i.e., input resolution,
inference execution location, and compression ratio. During
the first 120 seconds, A3D always chooses to offload the model

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on August 21,2023 at 06:27:10 UTC from IEEE Xplore. Restrictions apply.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 22. Case study of A3D’s adaptive decisions. (a) Bandwidth trace.
(b) Environment complexity records. (c) Environment dynamics records.
(d) A3D’s input resolution decisions. (e) Decided execution locations of
navigation model inference, where D and E stand for onboard device and
server, respectively. (f) A3D’s compression ratio decisions. (g) Quality of
Navigation of different approaches during the flight period, where EIE
indicates the neural scheduler’s environmental information encoding module.

to the server because the bandwidth is at a high level, and
offloading to the server will provide more benefits. According
to Fig. 22(a), there is a significant decrease in bandwidth
around 120 seconds, to which A3D responds by reducing the
compression ratio from 95 to 60 to reduce the amount of
data transferred. In the middle to late stages of the exper-
iment, as bandwidth remains low, A3D begins to alternate
between local computation and offloading to the server: the
lower the bandwidth, the more likely A3D will choose to
compute locally. For the choice of resolution, A3D gradually
switches from the highest resolution to a lower resolution for
inference to reduce latency. Considering the high computing
latency brought by a high-resolution input, A3D prefers to
resize an image in a lower resolution when computing the
navigation model locally. The above results validate that A3D
always achieves higher QoN compared to the other baselines,
shown in Fig. 22(g). We also inspect the effectiveness of
the Environmental Information Encoding (EIE) module by
deactivating it in A3D’s neural scheduler. As the bandwidth
declines and the environment becomes more complex and
highly dynamic (timestamp [200,300]), however, A3D w/o EIE
significantly drops its QoN and performs even worse than
Local baseline. This implies that the system without EIE can
still possess the ability of adaptive scheduling, which however
is relatively limited compared to the complete A3D (with EIE).
Such mild adaptability comes from the capability of DRL’s
neural network agent, but the lack of EIE makes it fall short
in environments with extremely low bandwidth and complex
scenes, which is exactly what EIE-enhanced A3D can deal
with.

Fig. 23. Left: training curves of the neural scheduler with different
DRL models with and without the Environmental Information Encoding
(EIE) module. Right: The memory footprint of the neural scheduler and the
navigation model.

TABLE I
COMPARISON OF VARYING SCHEDULER CONFIGURATIONS

F. Neural Scheduler Implication

Our neural scheduler is implemented using the stable-
baseline framework [35] based on Pytorch, with RMSProp
adopted as the optimizer. We explore the optimal structure of
Actor and Critic networks in the DRL model. To find the
best parameterized configuration, we use different network
structures and calculate the mean and variance of their rewards
after convergence, as listed in Table I, where bracketed values
represent the number of neurons in the hidden layer. The
experiments show that the DRL model converges with the
highest rewards and the lowest variance with a two-layer
128-neuron Actor network and a two-layer 64-neuron Critic
network, which is therefore set as the default structure through
other evaluations. Fig. 23(left) shows the training curves of
the DRL model’s reward (QoN) with the total 6×105 training
iterations, which takes about 8 hours in the numerical sim-
ulation environment. we compare two DRL algorithms, A2C
and Deep Q-Network (DQN), and it can be seen that A2C’s
both convergence speed and convergent reward are better than
DQN. We also witness that without the EIE module, both
algorithms’ rewards fail to climb to a higher altitude given
thousands of training iterations. Their curves remain at a much
lower level than that of the original version (A2C/DQN with
EIE), implying that the absence of EIE could lead to invalid
optimization towards QoN and confirms the limited scheduling
adaptability in the case study experiment (Sec. VIII-E).

We also examine the overhead of our neural scheduler.
We measure the execution overhead on the onboard device
(Jetson Nano) and the results are shown in Table I. It can
be seen that the execution overhead is around 5ms for all
network structures, which is negligible in the whole frame-
work. In addition, we compare the memory overhead of the
DRL model and the navigation model in Fig. 23(right). The
memory footprint of the navigation model is tightly related to
the resolution of input images. Specifically, the memory space
taken by the DRL model is 3.50%-17.48% out of the whole.
For any resolution, the memory footprint of the DRL scheduler
is much lower than that of the navigation model, indicating that
it is minority compared to the core of navigation tasks.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on August 21,2023 at 06:27:10 UTC from IEEE Xplore. Restrictions apply.

ZENG et al.: A3D: ADAPTIVE, ACCURATE, AND AUTONOMOUS NAVIGATION FOR EDGE-ASSISTED DRONES 15

IX. RELATED WORK

Autonomous drone navigation. With the successful appli-
cation of CNN in computer vision, more and more research
has used CNN for drone navigation and obstacle avoidance.
In [36], a self-supervised learning approach is used to train
an image classification CNN to achieve autonomous drone
obstacle avoidance indoors. The authors in [9] use their dataset
collected on foot to train an image regression CNN model to
predict the drone’s turn angle and achieve autonomous drone
navigation along a forest trail. Reference [37] trains a naviga-
tion model for predicting turn angles in a drone simulator to
achieve autonomous drone navigation and obstacle avoidance
indoors. These works use CNN to directly control drones,
ignoring the decisions that A3D optimizes.

Edge computing for drones. Drones, as end devices that
often perform computationally intensive tasks, can gain many
benefits from edge computing [33], especially for vision-based
drone tracking [38] and detection [39], [40]. Reference [34]
proposes a framework to minimize the amount of transmitted
data while ensuring the accuracy of drone video analysis with
edge-assisted. Reference [41] proposes a method to reduce the
amount of data transmission when robots and edge servers
jointly train a model. The authors in [42] and [43] both
study the scenarios in which an edge server assists a drone
to perform SLAM in order to reduce the latency and energy
consumption of the drone. This line of research does not
consider the CNN-based navigation model which requires
better state abstraction modules to facilitate our DRL-based
online scheduling algorithm.

DRL for task scheduling. DRL is widely recognized
as a promising tool to solve scheduling problems given its
powerful learning capability for online decision making. Pen-
sieve [44] uses DRL to automatically learn an adaptive bitrate
policy to optimize various Quality of Experience (QoE) met-
rics. Reference [45] proposes a DRL-based scheduler called
Decima that learns workload-specific scheduling policies for
complex data processing jobs. For video streaming analysis,
AdaDeep [46] integrates a combination of parameter pruning,
matrix decomposition, and model structure replacement at
different layers, using DQN to select the best compression
model at runtime based on the accuracy, latency, memory,
and energy requirements provided by the user. Reference [8]
proposes an edge-assisted scheduling system EdgeML that
uses DRL to learn model partitioning and early exit policies
to meet user requirements on latency, energy, and accuracy.
Compared with the above works, our DRL environment has
more complex state feature dependencies affecting the optimal
actions and needs new design modules embedded to accom-
modate a CNN-based drone navigation network.

X. CONCLUSION

In this paper, we propose A3D, an edge-assisted coopera-
tive drone navigation framework for high-quality autonomous
flight. By treating adaptive navigation as a service and design-
ing a DRL-based scheduler, A3D is able to dynamically adjust
the resolution, model execution position, and image encoding
quality according to the changes of the environment and
networking conditions. To support high-quality multi-drone
serving, A3D develops a network-aware resource allocation
algorithm to judiciously assign proper edge resources for the
corresponding serving containers. Extensive evaluation based

on a proof-of-concept prototype and simulation demonstrates
its effectiveness and efficiency, showing that A3D can improve
27.28% flight distance and reduce 28.06% latency compared
to non-adaptive solutions.

REFERENCES

[1] H. Chen, L. Zeng, X. Zhang, and X. Chen, “AdaDrone: Quality of
navigation based neural adaptive scheduling for edge-assisted drones,”
in Proc. IEEE 42nd Int. Conf. Distrib. Comput. Syst. (ICDCS), Jul. 2022,
pp. 548–558.

[2] B. Mishra, D. Garg, P. Narang, and V. Mishra, “Drone-surveillance
for search and rescue in natural disaster,” Comput. Commun., vol. 156,
pp. 1–10, Apr. 2020.

[3] D. Vasisht et al., “Farmbeats: An IoT platform for data-driven agricul-
ture,” in Proc. USENIX NSDI, 2017, pp. 515–529.

[4] S. H. Alsamhi, O. Ma, M. S. Ansari, and F. A. Almalki, “Survey
on collaborative smart drones and Internet of Things for improving
smartness of smart cities,” IEEE Access, vol. 7, pp. 128125–128152,
2019.

[5] Y. Bengio, I. Goodfellow, and A. Courville, Deep Learning, vol. 1.
Cambridge, MA, USA: MIT Press, 2017.

[6] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge
intelligence: Paving the last mile of artificial intelligence with edge
computing,” Proc. IEEE, vol. 107, no. 8, pp. 1738–1762, Aug. 2019.

[7] A. Galanopoulos, J. A. Ayala-Romero, D. J. Leith, and G. Iosifidis,
“AutoML for video analytics with edge computing,” in Proc. INFOCOM,
2021, pp. 1–10.

[8] Z. Zhao, K. Wang, N. Ling, and G. Xing, “EdgeML: An autoML
framework for real-time deep learning on the edge,” in Proc. IoTDI,
2021, pp. 133–144.

[9] N. Smolyanskiy, A. Kamenev, J. Smith, and S. Birchfield, “Toward low-
flying autonomous MAV trail navigation using deep neural networks for
environmental awareness,” in Proc. IROS, 2017, pp. 4241–4247.

[10] P. Zhu et al., “VisDrone-DET2021: The vision meets drone object
detection challenge results,” in Proc. IEEE/CVF Int. Conf. Comput. Vis.
Workshops (ICCVW), Oct. 2021, pp. 1–9.

[11] Amazon. (2020) Prime Air. [Online]. Available: https://www.
amazon.com/Amazon-Prime-Air/b?node=8037720011

[12] S. Jung, S. Hwang, H. Shin, and D. H. Shim, “Perception, guidance, and
navigation for indoor autonomous drone racing using deep learning,”
IEEE Robot. Autom. Lett., vol. 3, no. 3, pp. 2539–2544, Jul. 2018.

[13] A. Loquercio, A. I. Maqueda, C. R. del-Blanco, and D. Scaramuzza,
“DroNet: Learning to fly by driving,” IEEE Robot. Autom. Lett., vol. 3,
no. 2, pp. 1088–1095, Apr. 2018.

[14] N. J. Sanket et al., “EVDodgeNet: Deep dynamic obstacle dodging with
event cameras,” in Proc. ICRA, 2020, pp. 10651–10657.

[15] A. Kouris and C.-S. Bouganis, “Learning to fly by MySelf: A self-
supervised CNN-based approach for autonomous navigation,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2018, pp. 1–9.

[16] J. Jiang et al., “Chameleon: Scalable adaptation of video analytics,” in
Proc. SIGCOMM, 2018, pp. 253–266.

[17] T. Tan and G. Cao, “FastVA: Deep learning video analytics through edge
processing and NPU in mobile,” in Proc. IEEE Conf. Comput. Commun.
(INFOCOM), Jul. 2020, pp. 1947–1956.

[18] C. Wang, S. Zhang, Y. Chen, Z. Qian, J. Wu, and M. Xiao, “Joint
configuration adaptation and bandwidth allocation for edge-based real-
time video analytics,” in Proc. INFOCOM, 2020, pp. 257–266.

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in
deep convolutional networks for visual recognition,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 37, no. 9, pp. 1904–1916, Sep. 2015.

[20] L. Zeng, X. Chen, Z. Zhou, L. Yang, and J. Zhang, “CoEdge:
Cooperative DNN inference with adaptive workload partitioning over
heterogeneous edge devices,” IEEE/ACM Trans. Netw., vol. 29, no. 2,
pp. 595–608, Apr. 2021.

[21] T. Ouyang, X. Chen, L. Zeng, and Z. Zhou, “Cost-aware edge resource
probing for infrastructure-free edge computing: From optimal stopping
to layered learning,” in Proc. IEEE Real-Time Syst. Symp. (RTSS),
Dec. 2019, pp. 380–391.

[22] L. Zeng, E. Li, Z. Zhou, and X. Chen, “Boomerang: On-demand
cooperative deep neural network inference for edge intelligence on the
industrial Internet of Things,” IEEE Netw., vol. 33, no. 5, pp. 96–103,
Sep. 2019.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on August 21,2023 at 06:27:10 UTC from IEEE Xplore. Restrictions apply.

16 IEEE/ACM TRANSACTIONS ON NETWORKING

[23] T. Ouyang, Z. Zhou, and X. Chen, “Follow me at the edge:
Mobility-aware dynamic service placement for mobile edge comput-
ing,” IEEE J. Sel. Areas Commun., vol. 36, no. 10, pp. 2333–2345,
Oct. 2018.

[24] A. Ndikumana, S. Ullah, T. LeAnh, N. H. Tran, and C. S. Hong,
“Collaborative cache allocation and computation offloading in mobile
edge computing,” in Proc. 19th Asia–Pacific Netw. Oper. Manage. Symp.
(APNOMS), Sep. 2017, pp. 366–369.

[25] M. Fonder and M. Van Droogenbroeck, “Mid-air: A multi-modal
dataset for extremely low altitude drone flights,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), Jun. 2019,
pp. 553–562.

[26] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Proc.
NeurIPS, 2000, pp. 1008–1014.

[27] H. Riiser, P. Vigmostad, C. Griwodz, and P. Halvorsen, “Commute path
bandwidth traces from 3G networks: Analysis and applications,” in Proc.
4th ACM Multimedia Syst. Conf., Feb. 2013, pp. 114–118.

[28] PX4. (2020). Offboard Mode. [Online]. Available:
https://docs.px4.io/main/en/flight_modes/offboard.html

[29] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “AirSim: High-fidelity visual
and physical simulation for autonomous vehicles,” in Field and Service
Robotics. Cham, Switzerland: Springer, 2018, pp. 621–635.

[30] Giampaolo. (2021). Psutil. [Online]. Available: https://github.
com/giampaolo/psutil

[31] EsNet. (2021). iperf. [Online]. Available: https://github.com/
esnet/iperf

[32] Zeromq. (2021). Zeromq. [Online]. Available: https://github.com/
zeromq/pyzmq

[33] W. Chen, B. Liu, H. Huang, S. Guo, and Z. Zheng, “When UAV
swarm meets edge-cloud computing: The QoS perspective,” IEEE Netw.,
vol. 33, no. 2, pp. 36–43, Mar. 2019.

[34] J. Wang et al., “Bandwidth-efficient live video analytics for drones via
edge computing,” in Proc. SEC, 2018, pp. 159–173.

[35] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and
N. Dormann, “Stable-Baselines3: Reliable reinforcement learning imple-
mentations,” J. Mach. Learn. Res., vol. 22, no. 268, pp. 1–8,
2021.

[36] D. Gandhi, L. Pinto, and A. Gupta, “Learning to fly by crashing,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Sep. 2017,
pp. 3948–3955.

[37] K. Kang, S. Belkhale, G. Kahn, P. Abbeel, and S. Levine, “Generaliza-
tion through simulation: Integrating simulated and real data into deep
reinforcement learning for vision-based autonomous flight,” in Proc.
ICRA, 2019, pp. 6008–6014.

[38] H. Zhang, G. Wang, Z. Lei, and J.-N. Hwang, “Eye in the sky:
Drone-based object tracking and 3D localization,” in Proc. MM, 2019,
pp. 1–9.

[39] K. Deng et al., “Geryon: Edge assisted real-time and robust object
detection on drones via mmWave radar and camera fusion,” in Proc.
ACM Interact., Mobile, Wearable Ubiquitous Technol., vol. 6, no. 3,
pp. 1–27, Sep. 2022.

[40] A. Gumaei et al., “Deep learning and blockchain with edge computing
for 5G-enabled drone identification and flight mode detection,” IEEE
Netw., vol. 35, no. 1, pp. 94–100, Jan. 2021.

[41] S. Chinchali et al., “Sampling training data for continual learning
between robots and the cloud,” in Proc. ISER. Cham, Switzerland:
Springer, 2020, pp. 296–308.

[42] S. Hayat, R. Jung, H. Hellwagner, C. Bettstetter, D. Emini, and
D. Schnieders, “Edge computing in 5G for drone navigation: What
to offload?” IEEE Robot. Autom. Lett., vol. 6, no. 2, pp. 2571–2578,
Apr. 2021.

[43] M. A. Messous, H. Hellwagner, S.-M. Senouci, D. Emini, and
D. Schnieders, “Edge computing for visual navigation and mapping in
a UAV network,” in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2020,
pp. 1–6.

[44] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video stream-
ing with pensieve,” in Proc. Conf. ACM Special Interest Group Data
Commun., Aug. 2017, pp. 197–210.

[45] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and
M. Alizadeh, “Learning scheduling algorithms for data processing clus-
ters,” in Proc. ACM Special Interest Group Data Commun., Aug. 2019,
pp. 270–288.

[46] S. Liu, Y. Lin, Z. Zhou, K. Nan, H. Liu, and J. Du, “On-demand deep
model compression for mobile devices: A usage-driven model selection
framework,” in Proc. MobiSys, 2018, pp. 389–400.

Liekang Zeng (Graduate Student Member, IEEE)
received the B.E. and Ph.D. degrees from Sun
Yat-sen University, Guangzhou, China. His cur-
rent research interests include edge intelligence,
mobile computing, and distributed machine learning
systems.

Haowei Chen received the B.S. and M.S. degrees
from the School of Computer Science and Engineer-
ing, Sun Yat-sen University, Guangzhou, China. His
research interests include collaborative device-edge
computing and On-device inference acceleration.

Daipeng Feng (Graduate Student Member, IEEE)
received the B.S. degree from the School of Com-
puter Science and Engineering, Sun Yat-sen Uni-
versity, Guangzhou, China, in 2021, where he is
currently pursuing the M.S. degree. His current
research interests include collaborative device-edge
computing and on-device inference acceleration.

Xiaoxi Zhang (Member, IEEE) received the B.E.
degree in electronics and information engineering
from the Huazhong University of Science and Tech-
nology in 2013 and the Ph.D. degree in computer
science from The University of Hong Kong in
2017. She is currently an Associate Professor with
the School of Computer Science and Engineer-
ing, Sun Yat-sen University (SYSU). Before joining
SYSU, she was a Post-Doctoral Researcher with the
Department of Electrical and Computer Engineering,
Carnegie Mellon University. Her research interests

include optimization and algorithm design for networked systems, including
cloud and edge computing networks, NFV systems, and distributed machine
learning systems.

Xu Chen (Senior Member, IEEE) received the
Ph.D. degree in information engineering from The
Chinese University of Hong Kong in 2012. He is
currently a Full Professor with Sun Yat-sen Univer-
sity, Guangzhou, China, and the Vice Director of
the National and Local Joint Engineering Laboratory
of Digital Home Interactive Applications. He was
a Post-Doctoral Research Associate with Arizona
State University, Tempe, USA, from 2012 to 2014,
and a Humboldt Scholar Fellow with the Institute
of Computer Science, University of Goettingen,

Germany, from 2014 to 2016. He was a recipient of the Prestigious Hum-
boldt Research Fellowship awarded by Alexander von Humboldt Foundation
of Germany, the 2014 Hong Kong Young Scientist Runner-Up Award,
the 2017 IEEE Communication Society Asia–Pacific Outstanding Young
Researcher Award, the 2017 IEEE ComSoc Young Professional Best Paper
Award, the Honorable Mention Award of 2010 IEEE International Confer-
ence on Intelligence and Security Informatics, the Best Paper Runner-Up
Award of 2014 IEEE International Conference on Computer Communica-
tions (INFOCOM), and the Best Paper Award of 2017 IEEE International
Conference on Communications. He is also an Area Editor of IEEE OPEN
JOURNAL OF THE COMMUNICATIONS SOCIETY and an Associate Editor of
the IEEE TRANSACTIONS WIRELESS COMMUNICATIONS, IEEE INTERNET
OF THINGS JOURNAL, and IEEE JOURNAL ON SELECTED AREAS IN COM-
MUNICATIONS (JSAC) Series on Network Softwarization and Enablers.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on August 21,2023 at 06:27:10 UTC from IEEE Xplore. Restrictions apply.

