
EdgeC3: Online Management for Edge-Cloud
Collaborative Continuous Learning

Shaohui Lin1, Xiaoxi Zhang1, Yupeng Li2, Carlee Joe-Wong3, Jingpu Duan4, Xu Chen1

1Sun Yat-sen University, 2Hong Kong Baptist University, 2Carnegie Mellon University, 2Peng Cheng Laboratory
{linshh65}@mail2.sysu.edu.cn, {zhangxx89, chenxu35}@mail.sysu.edu.cn, ypengl@hkbu.edu.hk,

cjoewong@andrew.cmu.edu, duanjp@pcl.ac.cn

Abstract—Deep learning (DL) powered real-time applications
usually need continuous training using data streams generated
geographically. Enabling data offloading among computation
nodes through model training is promising to mitigate the
problem that devices generating large datasets may have low
computation capability. However, offloading can compromise
model convergence and incur communication costs, which must
be balanced with the cost spent on computation and model
synchronization. Therefore, this paper proposes EdgeC3, a novel
framework that can optimize the frequency of model aggregation
and dynamic offloading for continuously generated data streams,
navigating the trade-off between long-term accuracy and cost.
We first provide a new error bound to capture the impacts of
data dynamics that are varying over time and heterogeneous
across devices. Based on the bound, we design a two-timescale
online optimization framework. We periodically learn the syn-
chronization frequency to adapt with uncertain future offloading
and network changes. In the finer timescale, we manage online
offloading by extending Lyapunov optimization techniques to
handle an unconventional setting, where our long-term global
constraint can have abruptly changed aggregation frequencies
that are decided in the longer timescale. Finally, we theoretically
prove the convergence of EdgeC3 by integrating the coupled
effects of our two-timescale decisions, and we demonstrate its
advantage through extensive experiments.

I. INTRODUCTION

Nowadays, a large number of emerging applications, such

as the Internet of Things and video analytics, are powered

by deep learning (DL) approaches [1]. Using a sufficient

amount of data generated by geographically dispersed terminal

devices, the DL models can be well trained to make predictions

or output decisions for those applications. Since training deep

neural network (DNN) models is data-intensive, sending all the

data to the cloud for iterative training and periodic testing is

expensive and time-consuming. In contrast, the emerging mo-

bile edge computing (MEC) technology provides an efficient

solution by enabling data processing at edge servers [2] and

This work was supported by NSFC grants 62102460 and 62202402,
grant 202201011392 under the Guangzhou Science and Technology Plan
Project, Guangdong Basic and Applied Basic Research Foundation (grants
2022A1515011583, 2023A1515011562 and 2023A1515012982), Young Out-
standing Award under the Zhujiang Talent Plan of Guangdong Province,
Germany/Hong Kong Joint Research Scheme sponsored by the Research
Grants Council of Hong Kong and the German Academic Exchange Service
of Germany (G-HKBU203/22), NSF grant CNS-2106891, One-off Tier 2
Start-up Grant (2020/2021) of Hong Kong Baptist University (Ref. RC-
OFSGT2/20-21/COMM/002), and Startup Grant (Tier 1) for New Academics
AY2020/21 of Hong Kong Baptist University. The corresponding author is
Xiaoxi Zhang.

computationally capable mobile devices in close proximity to

the data sources.

Enabling the offloading of data training from devices to edge

servers also realizes the popular distributed machine learning

(DML) architecture where multiple computation nodes per-

form the training tasks in parallel so as to speed up the model

convergence [3]. More importantly, offloading is promising

in balancing the geo-distributions of data and computation

resources. For example, surveillance cameras on collaborative

drones may generate huge numbers of data streams but need

to offload the training data to different edge servers depending

on their locations. Smart vehicles may join crowdsensing tasks

to monitor the traffic or air condition across different cities,

contribute their computation to perform a DML task. Indeed,

in some cases devices may actually wish to discard data

entirely, if the data does not significantly change the model but

processing it incurs large computing or communication cost.

However, most existing DML studies overlook the flexibility

of offloading, mainly due to the following complexity chal-

lenges. 1) The computation and communication capabilities

in the network exhibit large heterogeneity; 2) It is hard to

quantify the model accuracy under changing and heteroge-

neous data amounts over computation nodes; 3) Dynamic data

offloading incurs complex tradeoffs between cost consumption

and model accuracy.

Apart from spatial complexity, the fourth challenge is that

real-time edge DL-based applications, such as video analytics,

also encounter temporal uncertainty. Unlike a pre-determined

static dataset assumed by classic DML studies, continuously

generated training and testing data will cause severe data

shift [4]. Continuous learning can mitigate the data shift prob-

lem but requires extra work on model construction or lacks

convergence guarantee. This work proposes to quantify the

model convergence with respect to the spatial heterogeneity

and temporal uncertainty simultaneously.

We then design efficient algorithms to navigate the trade-

off between model accuracy and long-term cost expenditure,

addressing the above challenges. More concretely, we focus

on distributed ML training with periodical model aggregation

and data offloading enabled, similar to cooperative federated

learning (CFL) [5], but we consider a configurable aggregation

frequency and fresh streaming data. Periodically aggregating

local models can significantly save communication overhead

at the expense of a lower accuracy. It is therefore critical

to determine the aggregation frequency so that the available

resource is most efficiently used in increasing model accuracy.

Besides, the cost spent on computation, model synchroniza-

tion, and data offloading need to be carefully balanced es-

pecially when the total budget of cost expenditure is limited.

Existing FL studies have analyzed the impact of various hyper-

parameters [6], [7] but overlooked the trade-off between the

aggregation frequency and data offloading, and they rarely

provide accuracy analysis for data shifts.

To the best of our knowledge, this is the first performance-

guaranteed two-timescale online optimization framework that
jointly decides dynamic data offloading and the aggregation
frequency of cooperative continuous training using heteroge-
neous devices and data streams. To achieve this, we make the

following technical contributions.

First, we propose a new online continuous training frame-

work customized for the edge-cloud collaborative network. In

deciding which devices should process which data points, our

formulation accounts for resource limitations and model accu-

racy. While ideally more data would be processed at devices

with more computing resources, sending data samples to such

devices may overburden the network. Moreover, processing

too many data samples can incur large processing costs relative

to the gain in model accuracy. We theoretically derive a bound

of the training error when data can move between devices and

the global aggregation frequency may change dynamically.

Second, we propose a novel two-timescale online learning

algorithm to jointly optimize the aggregation frequency and

data offloading, which are decided at the beginning of each

training round and at a finer timescale, respectively. Since the

best aggregation frequency should be dependent with network

characteristics, data distributions, and time-varying offloading

outcomes, we decide it by learning from sequential feedbacks

of model accuracy. We then optimize the offloading decisions

by extending Lyapunov optimization into unconventional sce-

narios where the constraints may change abruptly, accounting

for the affects of modified aggregation frequencies.

Third, we perform both rigorous theoretical analysis and

extensive experiments to demonstrate the efficacy and ad-

vantages of EdgeC3. We first prove a bounded long-term

performance gap (a.k.a. regret) of the training accuracy be-

tween our algorithm and the expected offline optimum. We

then conduct test-bed experiments where distributed training

is performed using heterogeneous and time-varying datasets

at edge computation nodes. Experimental results show that

our two-timescale online algorithm can make best use of

limited resource and the cost budget to achieve higher model

accuracy.

II. RELATED WORK

We summarize the prior results into three categories and

highlight the aspects in which they differ from our work.

Cooperative Federated Learning (CFL) [5], [8]–[10] has

emerged as a new paradigm which is built on device-to-device

interactions and edge-cloud collaboration. While traditional FL

[6] deployment prohibits communication between distributed

clients who train local models using only private data, CFL

instead focuses on the distributed system built on trusted

network nodes. By enabling data offloading, it leverages the

interaction between clients to unleash the potential of inter-

network collaboration. Sharing the model training schemes

of CFL, studies of classic FL algorithms [11], [12] started

considering optimizing the frequency of global aggregations

under constrained network and computing resources; some

[10] focused on network topology between nodes to optimize

the tradeoffs between communication, computation, and model

performance in federated learning. Unlike our continuous

collaborative learning scenario, theirs do not have time-varying

data generation and movement or volatile network capabilities.

Computation offloading allows data to be moved from

one device to another. Some works have considered splitting

different layers of the neural network and offloading some

of them to the edge or cloud. For instance, [13] proposed a

distributed computing hierarchies, where the edge and terminal

devices use the shallow part of the neural network for fast

and local reasoning; [14] designed a scheme to optimally

partition the DNN under different network conditions; and [9]

consider sharing parameters of different layers. In addition,

task offloading strategies are widely studied based on differ-

ent requirements, such as mobility-aware [15], data quality-

aware [16] and multi-user context-aware [17]. However, these

works are not for collaborative learning with periodical model

aggregations.

Online data management has been studied for DNN

training or federated learning. Existing literature have pro-

posed gradient update methods for training at streaming data

to achieve faster convergence, e.g., SAG [18], SDCA [19].

SVRG [20], SAGA [21]. An online modification of the Nelder-

Mead optimisation technique [22] called SPT is designed for

hyper-parameter tuning, to address the issue of variability

in data flows. However, these works are not for distributed

training in dynamic edge networks. To handle dynamically

incoming training data samples for edge ML, CEFL [23]

designed an online control system with admission control,

load balancing, data scheduling, and accuracy adjustment. But

model convergence and the aggregation frequency are not

analyzed in these efforts. A few other works build online

algorithms that can cope with dynamic network settings for

DML to satisfy the resource and accuracy restrictions, [24]–

[26], but they do not consider data offloading and its effects

on improving the model accuracy.

III. SYSTEM MODEL

In this section, we formalize the problem setting of

our cloud-edge collaborative continuous learning framework.

To simplify our definitions, we define [X] to be the set

{1, · · · , X}.

A. System architecture

We consider a set of N devices denoted by N , a set of M
edge servers denoted by M, and a remote cloud. Data streams

are generated and processed in T evenly distributed timesteps,

2

indexed by t ∈ [T]. Each device, e.g., a smartphone or smart

vehicle, can both collect data and perform training. These data

can be offloaded to any one of the edge servers or the remote

cloud to collaboratively finish the ML model training. We

consider a parameter-server (PS) architecture where multiple

nodes are coordinated by a central PS, which is deployed in

the cloud for reliability. For clarity, we use i and j to index a

pair of devices, m to index an arbitrary edge server, and c to

denote the remote cloud. The full set of our network nodes is

U = M∪N ∪ {c}, which includes the devices, edge servers,

and the cloud. We then define its size as U � M +N + 1.

1) Data generation and offloading: In each timestep t,
device i ∈ N dynamically collects a dataset denoted by Di(t)
with a size Di(t). We allow each device i ∈ N to split its

data and offload them to different accessible nodes u ∈ U .1

Let siu ∈ [0, 1] represent the fraction of data collected by

device i ∈ N that is offloaded to node u ∈ U at time t. The

number of data samples offloaded from i to u is Di(t)siu(t).
2

The size of data processed by device i ∈ N at t is then:

Hi(t) = Di(t)sii(t) +
∑
j �=i

Dj(t)sji(t).∀i, j ∈ N . (1)

The edge servers and cloud instead do not generate any data.

Thus, the size of data processed by each of them at time t is:

Hk(t) =
∑
i

Di(t)sik(t).∀i ∈ N , ∀k ∈ M∪ {c} (2)

In addition, each device i can discard a ri(t) ∈ [0, 1] fraction

of data in t, as processing entire datasets may incur very large

computation cost but not improve model accuracy much.

2) Cost components and the long-term constraint: Let

φu(t) and Φu(t) represent the cost of processing a data

point and the maximum number of data points that can be

processed at node u at t, respectively. These factors are

heterogeneous and time-varying possibly due to co-existing

(background) applications or (re-)charging functions activated

at each device. In contrast, we assume that the cloud has

abundant computing resources and thus remove the constraint

of its capacity. We then define ψiu(t) as the transmission cost

of device i in transmitting a single data point to node u, and it

has a prevailing budget Ψiu(t). Intuitively, ψiu(t) and Ψiu(t)
depend on factors such as available bandwidth and channel

interference conditions. In addition, we define �u(t) to be

the amount of data (parameters) sent from u to the PS in the

cloud for model aggregation at time t. The total budget3 of our

consumed cost over T timesteps is C. Balancing the cost of
offloading, local computation, and model synchronization
under a long-term cost budget is therefore critical to achieve

efficient continuous training. We will elaborate the challenges

of designing performance-guaranteed algorithms in Sec. IV-C.

1Our work still works if only a subset of nodes is accessible.
2When u = i, device i processes corresponding data on the device locally.
3The budget C is pre-determined by the task owner and possibly increased

with the service time T For example, performing a video analytics training
application in 1 week should have a larger C than running it in 3 hours.

����������
�������
�		
�	����
�����	���
�������������
���
�����

�����������
������

�������
�		
�	����
�����	 ��

� �
�

�

�

�

�

��

�

����	���������	��������

�

�

	
����
�����
� ������

���
�������������
�
� ����� �������

��

Fig. 1: Overview of EdgeC3 architecture.

B. Collaborative continuous training with dynamic datasets

Let wu(t) represent the local model updated in time t using

stochastic gradient descent (SGD) at node u and w denote the

global model parameters aggregated in the cloud. Let Hu(t)
represent the prevailing dataset that is used for local training at

node u in t, which includes the data offloaded to and generated

in u (see (1), (2)). For each local dataset Hu(t) with a size

Hu(t) at node u in t, the local loss function is:

Fu(wu(t),Hu(t)) �
1

Hu(t)

∑
d∈Hu(t)

f(wu(t), xd, yd), (3)

where f(wu(t), xd, yd) is the loss of each data point d �
(xd, yd) in Hu(t)

4. The objective function is to minimize the

total loss of the global model, i.e., F (·) =
∑

u∈U Hu∑
u Hu

Fu(·).
Each node u updates its parameters as follows:

wu(t) = wu(t− 1)− η∇Fu(wu(t− 1)), (4)

where η > 0 is the learning rate and ∇Fu(wu(t − 1)) is the

average gradient over the local dataset Hu(t). Each kth ag-
gregation round includes a number of τk ∈ Z

+ local updates
and an aggregation step in timestep t =

∑
k τk, k ∈ Z

+ , after

which the local models are aggregated at the PS:

w(t) = w(t− 1)− η

∑
u Hu(t− 1)∇Fu(wu(t− 1))∑

u Hu(t− 1)
. (5)

Then, the PS broadcasts w(t) to each computation node, once

the set of computation nodes for the next aggregation round

is determined. Figure 1 depicts our EdgeC3 architecture.

Impact of aggregation frequency. Along with the of-

floading decisions, each τk needs to be carefully chosen. It

plays a key role in: 1) balancing the cost of computation

and communication for offloading datasets and transmitting

model parameters, and 2) affecting the global model accuracy.

A smaller τk can lead to a higher accuracy but also larger

communication cost, leaving little remaining cost for data of-

4For simplicity of notation, we use Fu(wu(t)) interchangeably with
Fu(wu(t),Hu(t)) in the rest of this paper.

3

floading. The node will then be forced to do local computation

and discard data, which impedes the accuracy finally.

IV. PROBLEM FORMULATION AND ANALYSIS

In this section, we present our joint optimization of aggrega-

tion frequency and data offloading with time-varying network

characteristics and data generation. Our goal is to maximize

the long-term training accuracy, subject to the constraints

of the accumulated consumed cost and prevailing limits of

communication and computation capabilities. We answer the

question of how model accuracy is affected by the time-

varying training data and aggregation frequency through an

optimization problem shown in Section IV-B and a new

convergence bound derived in Section IV-A.

A. Upper Bound on Convergence

Intuitively, more data processed and a higher aggregation

frequency for model synchronization are both beneficial to

improve the final accuracy. However, it is unclear how these

two factors are coupled with the data movements and dis-

tribution shifts within each local dataset. To ensure tractable

convergence analysis, we make the following assumptions:

Assumption 1. The loss function Fu(w) of each node u is
convex, i.e., Fu(w) ≥ Fu(v)+(w−v)T∇Fu(v), ρ-Lipschitz,
i.e., ||Fu(w) − Fu(v)|| ≤ ρ||w − v||, and β-smooth, i.e.,
||∇Fu(w)−∇Fu(v)|| ≤ β||w − v|| for any w and v.

Assumption 2. For any u and w at time t, there exists an
upper bound of ‖∇Fu(w(t))−∇F (w(t))‖, which quantifies
the degree of data shift, i.e., ‖∇Fu(w(t)) − ∇F (w(t))‖ ≤
δu(t), where F (·) is our global loss function.

Assumption 1 is widely used in DML convergence stud-

ies [26], [27]. Nevertheless, our experimental results shown

in Section VI demonstrate that our method works well for

non-convex loss functions. Assumption 2 is customized for

our continuous collaborative learning, since it captures the

time-varying divergence between the local and global models,

which is affected by the size and distribution dynamics of the

generated data and our offloading decisions.

Lemma 1. For each t that lies in any given aggregation round
k with τk (k ≥ 1) local updates, the gap between distributed
parameters and the centralized parameter satisfy:

||w(t)−vk(t)|| ≤ η

2

t−1∑
y=

∑k−1
l=1 τl

(
(δ(y)k)2 + h

(
y −

k−1∑
l=1

τl
)2)

.

Here, the auxiliary parameter vk(t) equals w(t), if t is the
time that local models are aggregated, and satisfies vk(t) =
vk(t− 1)− η∇F (vk(t− 1)| ∪u∈U Hu(t)) otherwise. Besides,

we have h(x) � ((ηβ + 1)x − 1), δ(t)k �
∑U

u=1 Hu(t)δ
(t)k
u∑U

u=1 Hu(t)
,

δ
(t)k
u � max(

∑k−1
l=1 τl)≤y≤t δu(y), and

δu(t) = ‖∇Fu(w(t)|Hu(t))−∇F (w(t))‖ ≤ γu√
Hu(t)

+ Λu,

where Λu = ||∇Fu(w|Hu)−∇F (w| ∪u∈U Hu(t))||.
Lemma 1 relates the difference between local and global

models to Hu(t), the amounts of data that each node actually

processes. Based on this, we present our derived an upper

bound of the training error between using collaborative learn-

ing where each node n computes gradients using Hu(t) for τk
steps in each round k, denoted by F (wt) for simplicity, and

the optimal loss F (w∗) by processing these data centrally.

Theorem 1. (Training error bound of EdgeC3). Under As-
sumptions 1 and 2, η ≤ 1

β , and ε = O(Hu(t)
1
2), for any time

t′ in aggregation round k′, the training error in any t ≥ t′ in
round k, denoted by F (w(t))− F (w∗), is at most:

ηρ

2ε2
1

U2

t−1∑
t′=0

(∑
u∈U

(γu√
Hu(t′)

+ Λu

)2
m̂axt′

+ h
(
t′ −

k′−1∑
k=1

τk
)2)

− tωη(1− βη

2
), (6)

where (X)m̂axt′ is the maximum of X over each time in the
round of t′ until time t.

We provide the proof and method to select ε in [28].

B. Problem Formulation

Our goal is to jointly optimize (i) data offloading decisions

sij(t) and ri(t) and (ii) the aggregation frequency τk at each

training round k so as to minimize the long-term error bound.

Our optimization problem is then formulated as:

minimize
siu(t),ri(t),τk

T−1∑
t=0

p(t) (7)

subject to: Hu(t) ≤ Φu(t), ∀u, t (7a)

Di(t)siu(t) ≤ Ψiu(t), ∀i, u, t (7b)

T−1∑
t=0

Cca(t) +
∑

t∈{τ (k)}
Cco(t) ≤ C (7c)

ri(t) +
∑
u

siu(t) = 1, ∀i, u, t (7d)

siu(t), ri(t) ∈ [0, 1], ∀i, u, t (7e)

τk ∈ [1, τmax], ∀k (7f)

where the definitions of p(t), Cca(t), and Cco(t) are:

p(t) � ηρ

2ε2
1

U2

(∑
u∈U

(
γu√
Hu(t)

+ Λu

)2

m̂axt

+ h
(
t−

k−1∑
l=1

τl
)2)− tωη(1− βη

2
),

Cca(t) �
∑
u

(Hu(t)φu(t)) +
∑
i

∑
u

Di(t)siu(t)ψiu(t),

Cco(t) �
∑
u �=c

�u(t)ψuc(t).

Here, Hu(t) represents the amount of data processed by

each node u according to the definitions (1) and (2); Cca(t)

4

is the total cost of local computation and data offloading; and

Cco(t) represents the cost due to model synchronization that

happens only at time τ (k) �
∑k−1

l=1 τl + 1, for each k until

exceeding T . Constraints (7a) and (7b) ensure that the amounts

of data processed at each node and transmitted through each

link cannot exceed the node computation capacity and link

bandwidth capacity, respectively. Constraint (7c) is our long-

term cost constraint, which requires that the total cost spent

on computation, offloading, and model synchronization cannot

exceed the budget C. Equation (7d) ensures that all data

collected by device i at t must either be processed or discarded.

Finally, we consider that τk has an upper-limit τmax ≤ T
decided according to the task owner, and we will theoretically

analyze its impact on our algorithm performance.

C. Algorithmic Challenges

To reach the optimum of (7)–(7f) in an online manner, we

encounter the following technical challenges:

1) Online uncertainty: All data arrive dynamically, and

the cost of computation (φu(t)) and communication (ψiu(t))
associated with every node changes over time. These can only

be observed when time t starts, which means the problem

needs to be solved online with the inputs are given on the fly at

every time. Besides, since the aggregation frequency τk should

be updated at the beginning of each round, but choosing τk
should account for our offloading decisions to balance between

the cost and model accuracy, further escalating the difficulty.

2) Long-term budget: Although dynamic and uncertain

data generation and network qualities force us to make real-

time decisions, we cannot perform data offloading and model

synchronization greedily. The reason is that the long-term cost

budget may require conservative expenditure to save cost for

future use. However, with so many uncertain input parameters,

splitting the cost into each time before the training task starts

is not realistic. Thus, we need to handle the dependencies

between our decisions in different times in an adaptive way.

3) High complexity: Even for the offline setting, where all

the parameters over all times are revealed in advance, we still

face a mixed integer programming problem with a non-linear

objective function. It also requires co-optimization of two

decision variables, resulting in high optimization complexity.

V. TWO-TIMESCALE ONLINE ALGORITHM DESIGN

In this section, we propose a two-timescale online algo-

rithm, where offloading is delay-sensitive and thus decided in

a finer timescale while the aggregation frequency is decided

once each aggregation round completes, as shown in Fig. 2.

Our idea is to first decouple the joint-optimization problem

into two sub-problems, as they interact with each other in only

one constraint, the global budget constraint, and independently

affect other constraints. We then integrate a Multi-Armed

Bandits (MAB) [29] algorithm, which learns to optimize τk,

into the Lyapunov Optimization framework for deciding the

offloading in real-time. The difficulty is to address and analyze
the dependency between the decision making for the two
variables and bounding the overall sub-optimality (i.e., regret).

����

�������	�
���
��

�� �� ����

���������������	�
��������������

��������
���
����������
���� ����

Fig. 2: Design of the online two-timescale schema.

To achieve this, we extend Lyapunov Optimization theories

and the performance analysis into an unconventional setting
where the constraint can abruptly change due to the
longer-timescale updates, which drives our idea of using a

window-based Lyapunov optimization algorithm.

A. Longer-timescale control: deciding aggregation frequency

Due to the fact that the future offloading decisions and

network dynamics including the cost coefficients (e.g., ψiu(t)
and φv(t)) and streaming datasets may change over time and

haven’t revealed when we need to decide τk in the longer-

timescale. Therefore, we first decompose the longer timescale

learning problem from (7)-(7f) and then define a fixed set of

feasible arms {1, 2, · · · , τmax}. The sub-problem for learning

the best τk before each round starts is:

[P1] : minimizeτk∈{1,2,··· ,τmax} p(t) (8)

We apply the upper confidence bound (UCB) [30] method

for learning to optimize τk based on historical feedback of

p(t). As shown in line 9 of Algorithm 1, we choose the

number of local updates τk, based on the UCB of each feasible

choice τ , which is defined as −p̄(τ) +
√
2logK/Tτ , where

p̄(τ) denotes the average value of p(t) using τ local updates

in history, and Tτ denotes the number of times that any

τ ∈ [τmax] is selected. The first term in the UCB indicates

that we tend to choose τ with the best performance so far,

i.e., exploitation. Considering our objective function to be

minimized, we take the opposite of p̄(t). The second is to

increase the possibility of choosing arms that are selected less

often, i.e., exploration. Algorithm 1 then greedily chooses the

most suitable global aggregation frequency as:

τ = argmax{−p̄(τ) +
√
2logK/Tτ}, τ ∈ [1, τmax] (9)

Note that UCB has been widely used for online decision

making, and we refer interested readers to [30] for more

details. The merit of our method is beyond applying UCB

and instead in i) effectively decomposing the two-timescale

problem with a global constraint associating the bandit
actions and finer-timescale offloading decisions, and ii) inte-

grating online learning with extended Lyapunov Optimization

techniques with performance analysis (see Section V-C).

B. Finer-timescale control: deciding data offloading

Given τk when round k starts, we need to solve siu(t)
and ri(t) at each t. We adopt the Lyapunov drift-plus-penalty

5

framework to construct a virtual queue Q(t) as follows:

Q(t+ 1) = max {Q(t) + y(t), 0} (10)

y(t) = Cca(t) + Cco(t)|t∈{τ (k)} −
C

T
. (11)

Through (11), we transform the global constraint (7c) to∑
t y(t) ≤ 0. The values of Q(t) indicate how well a time-

averaged cost constraint is satisfied, i.e., a larger violation of

y(t − 1) ≤ 0 results in a larger Q(t). The corresponding

Lyapunov function is then defined as L(Θ(t)) = 1
2Q(t)2.

Next, the Lyapunov penalty drift can be formulated as:

	L(Θ(t)) = E {L(Θ(t+ 1))− L(Θ(t))|Θ(t)} . (12)

Finally, we wish to minimize a Lyapunov drift-plus-penalty:

	L(Θ(t)) + V E {p(t)|Θ(t)} , (13)

where V ≥ 0 is a coefficient that can be tuned by the owner

of the training task to make a trade-off between the optimality

and queue stability. A larger V means that we care more about

the cost constraint, while a smaller V implies that we are

willing to violate the constraint to some extend to achieve

better model accuracy. We quantify this trade-off in Lemma

2. We then adopt the upper-bound of drift-plus-penalty [31] to

transform the long-term constrained problem into a problem

that the decisions are independent across times.

However, conventional Lyapunov optimization requires
static constraints to guarantee bounded performance gap,

but our global cost constraint may have an abruptly changed

y(t) when t = τ (k). To address this, our idea is to use the

current τk to estimate the communication cost per time for all

future times to guarantee a stable estimate of y(t). Formally,

we modify (7c) as
∑T−1

t=0 Cca(t) +
T
τk
Cco(t) ≤ C and define

the estimate of y(t) for all t within round k as:

y(t) � Cca(t) +
1

τk
Cco(t)− C

T
, (14)

The offloading subproblem can be expressed as:

min V p(t) +Q(t)y(t) [P2]

s.t. constraint(7a)-(7b)

var. siu(t), ri(t) ∈ [0, 1]

(15)

This simple but efficient algorithm design is driven by our per-

formance analysis. The key insight (a preview of our analysis

in Section V-C) is that the upper-bound of the performance gap

between our algorithm and the optimum can be decomposed

into two gaps: 1) the gap in p(t) between using our decisions,

the sequence of τk and our offloading decisions (s, r), and

that using optimal τ and our (s, r); 2) the gap in p(t) between

using optimal τ (denoted by τ∗) and our (s, r) against the

final optimum. The first gap is bounded by UCB algorithm

under reactive feedbacks of using τk. The second gap can be

bounded by Lyapunov optimization theories since τ∗ is static

and thus y(t) ≤ 0 using (14) is the necessary and sufficient
condition of the original global constraint (7c) under τ∗.

Note that solving P2 is then easy by using existing standard

Algorithm 1: Procedure in the cloud

1: Input: Budget C, control parameter ϕ,γn,∇Fu(w|Du),
maximum τ value τmax, lower bound of global loss ε,
gradient descent step size η, online step size ηo, number

of nodes U , trade-off parameter V ;

2: Initialize τ ← 1, t̂ ← t ← 0, k ← 1, w(0) ← 0;

3: Send w(0) and τ to all nodes;

4: repeat
5: Receive φu(t),Φu(t) and estimate ψiu(t),Ψiu(t);
6: if t− t̂ = τ then
7: t̂ ← t; k ← k + 1; update τ by (9);

8: Receive ∇Fu(wu(t));
9: Estimate ∇F (w(t)) ← maxu {∇Fu(wu(t))}

10: Execute global update according to (5);

11: Calculate Λu ← ||∇Fu(w|Du)−∇F (w(t))||
12: Broadcast w(t) and τ and receive ρu, βu;

13: Estimate ρ ← max {ρu} , β ← max {βu};

14: end if
15: if t > 0 then
16: s∗, r∗ ← Solver(V,U,C, ρ, η, ε, k, τ, ϕ,Du(t),

ψiu(t), φu(t),Ψiu(t),Φu(t),Λu, γu);

17: Send s∗, r∗ to all nodes;

18: end if
19: t ← t+ 1;

20: until

Algorithm 2: Procedure at each node u

1: Initialize t̂ ← t ← 0;

2: Receive w(0) and τ from the cloud;

3: repeat
4: Receive Du(t) data samples if n ∈ N ;

5: Send φu(t),Φu(t) to the cloud;

6: if t− t̂ = τ then
7: t̂ ← t; send ∇Fu(wu(t)) to the cloud;

8: Receive w(t) and τ from the cloud;

9: ρu = ||Fu(wu(t))− Fu(w(t))||/||wu(t)−w(t)||;
10: βu = ||∇Fu(wu(t))−∇Fu(w(t))||/||wu(t)−w(t)||;
11: Send ρu, βu to the cloud; wu(t) ← w(t);
12: end if
13: if t > 0 then
14: Receive s∗, r∗ from the cloud and offload data;

15: end if
16: t ← t+ 1; execute local update according to (4);

17: until

optimization solvers, although parameters related to the model

(e.g., ρ, β) need to be estimated in practice. We provide the

pseudocode of the routine running at the PS in Algorithm 1

and that performed by each computation node in Algorithm 2.

Algorithm workflow. When each round k starts, τk is up-

dated by our UCB algorithm, as shown in line 5-7 in 1. Similar

to [12], we obtain ∇Fu(w|Du) and ∇F (w(t)) through local

computation and central tests, respectively. The values of ρu

6

and βu at each node are calculated based on the local loss

computed at w(t) and wu(t). They are needed in each t to

derive the offloading decision (lines 9-10 of Algorithm 2), so

we use the global model parameter w(t) obtained in the latest

aggregation step instead. When wu(t) = w(t), we update ρu
and βu to be zero. Similar to [12], we define that h(τ) = 0 for

all τ ≥ 1. This situation only occurs when different nodes have

extremely similar datasets so that the value of τ will not have

any impact on the accuracy of the model. We use the maximum

value of each node as the estimates of ρ, β and ∇F (w(t))
(line 13 of Algorithm 1), which still yields a valid convergence

rate based on our analysis. Given the estimated parameters, we

can adopt a classic solver for convex optimization to find the

optimal offloading decisions (line 16 of Algorithm 1). In each

t, the computation nodes offload data according to s∗ and r∗

received from cloud and then update their local models.

C. Theoretical analysis

We now theoretically bound the performance gap (a.k.a.

regret) between our two-timescale algorithm and the expected

offline optimum, who knows all the input parameters and

obtains the optimal solutions τ∗, s∗t , and r∗t . We extend the

analysis of Lyapunov optimization since we use modified per-

time constraint and periodically change the constraints due to

modified τk each round, and we nicely embed the regret of

UCB into the performance bound of our offloading decisions.

Lemma 2. The gap of the objective value
∑T

t=1 p(t) be-
tween using our offloading decisions (st, rt) and the optimum
(s∗t , r

∗
t), under the optimal number of local updates τ∗ is:

Regret1 = E

[
T−1∑
t=0

(
p(st, rt, τ

∗)−
T−1∑
t=0

p(s∗t , r
∗
t , τ

∗)

)]

≤ T

2V
[Cca +

Cco

τmax
− C

T
]2max +

E[L(Θ(0))]

V

Theorem 2. The total performance gap between using our
(st, rt, τk(t)) (k(t) means the round of t) and the op-
tima, defined as Regrettotal = E[

∑T−1
t=0 p(τk(t), st, rt) −∑T−1

t=0 p(τ∗, s∗t , r
∗
t)] is at most ≤ O(

√
K logK + ςT), where

ς < 1 is a tunable parameter determined by τmax and other
parameters. (Details in computing ς are deferred into [28].)

It shows that our regret grows sub-linearly with time, imply-

ing that the time-average gap approaches zero as T increases.

Note that we can always find τmax = TCco/(C − TCco), so

that the coefficient ς equals zero. But τmax also affects the

first term of the regret (the full form of regret is shown in

[28]), and we leave the optimization of τmax to our future

work. The detailed proof can be found in our report [28].

VI. EXPERIMENTAL VALIDATION

A. Experiment Setup

1) Training models: We evaluate the performance of the

collaborative training task using a Convolutional Neural Net-

work (CNN), with 2 convolutional layers, 2 max pooling lay-

ers, 2 local response normalization layers, 1 fully connection

TABLE I: Experiment parameters.

Ψij(t) Ψic(t) Di(t) Φi(t) φu(t) �u(t)

[50, 150] 104 [20, 500] [20, 200] [1, 30] 200

layer, and 1 softmax layer. It verifies that our method works

for distributed training under non-convex objective functions.

We use two types of data distributions: 1) i.i.d, where each

node has an entire dataset and 2) non-i.i.d, where all the data

points in each node have the same label. Both scenarios are

constructed using two datasets: MNIST and CIFAR-10. We

set the learning rate as η = 0.01, which is the same as [12] .

2) Network characteristics: We utilize the 4G LTE dataset

[32] to simulate the network dynamics. We map the “ULbi-

trate” in [20, 300] to our time-varying transmission cost ψij(t).
We randomly sample ψic(t) from [107, 2 × 107] to reflect

the difference between the cloud and edge and show other

parameters in Table I. The experiments are conducted on an

Intel NUC desktop which serves as the cloud and a 12th Gen

Intel(R) Core(TM) i9-12900K server to deploy 5 devices and

2 servers. Results in other experimental settings can be found

in [28]. We adopt Sockets to realize data transmission and

solve our problem P2 using a standard CVX solver.

3) Baselines: We compare each of our two sub-algorithms

with different baselines. First, we fix the aggregation frequency

and compare different offloading algorithms.

• Not offloading does not offload any data and meets the

local computation constraints.

• Random offloading uniformly at random selects the

target node and offloading fractions in each timestep, with

all the constraints satisfied.

• Offloading refers to our proposed offloading method.

We then compare with the following baselines to evaluate our

chosen decisions of τk for model aggregation.

• Fixed value uses a fixed τ (= 1 or 10) and the same

offloading as EdgeC3 throughout the training.

• Dynamic uses a state-of-the-art [12] strategy to choose

τk and the same offloading as EdgeC3.

We finally compare with different algorithm combinations.

• RandomAdaptive uses the same τk as EdgeC3.

• OffloadingDynamic adopts our offloading decisions and

combines [12] for choosing τk.

• RandomDynamic combines random offloading and [12].

In addition, in each time, there are three different data shift

degrees: 1) a, each node has data points of all 10 classes, 2)

b, the data points of each node are only 6 classes, 3) c, the

data points of each node are only 1 class. For both b and c,

the dataset is selected randomly from the 10 classes.

B. Evaluation Results

1) Performance of offloading: Fig. 3 shows the test ac-

curacy of our approach under MNIST. Fig. 3(a) shows that

using i.i.d. datasets, our offloading scheme has significant ad-

vantages over Not offloading. The overall difference between

7

the random scheme and using our offloading solutions only

in MNIST is not large. In contrast, Fig. 3(b) reveals that our

algorithm has obvious advantages over the two baselines for

non-i.i.d distributions. This is because the CNN model can

easily achieve a good performance on the MNIST dataset,

especially under i.i.d case. This implies that the model has

little dependence on the size of data. But in the case of non-

i.i.d distributions or more complicated models, data sizes play

a more critical role in speeding up the model convergence.

Thus, our algorithm can show more obvious advantages.

(a) i.i.d distribution. (b) Non-i.i.d distribution.

Fig. 3: Impact of offloading on MNIST (CNN).

2) Advantages of model aggregation frequency: Fig. 4 and

Fig. 5 exhibit the empirical superiority of our approach over

other approaches. Fig. 4(a) and Fig. 5(a) show that the UCB

algorithm largely explores different choices of τ and makes

fewer mistakes when time goes on. At the beginning, the

algorithm explores through trials and errors, and the results

of τ = 3 and τ = 5 have been learned under the MNIST and

CIFAR10 datasets, respectively. Our baselines either consume

the budget too aggressively because of a high aggregation

frequency, or it cannot converge within the same time as ours

because of setting the aggregation frequency to be too low.

(a) Decisions of our τk. (b) Accuracy vs time.

(c) Accuracy vs cost. (d) Accuracy vs time×cost.

Fig. 4: Evaluating choices of τ under MNIST.

(a) Decisions of our τk. (b) Accuracy vs time.

(c) Accuracy vs cost. (d) Accuracy vs time×cost.

Fig. 5: Evaluating choices of τ under CIFAR10.

(a) Impact of V on cost. (b) Impact of V on discard rate.

(c) Impact of budget. (d) Impact of data shift degree.

Fig. 6: Impact of various configurations.

Although Dynamic can also adjust the τ according to the

cost, it is not designed for continuous learning under uncertain

network dynamics and the long-term budget. Our method can

strike a better balance between time and cost budget to achieve

higher accuracy. Fig. 4(c) and Fig. 5(c) show the achieved

accuracy per unit of cost. In Fig. 5(c), EdgeC3 (Adaptive)

may seem inferior to using a larger τ . However, under the

same cost, using τ = 10 takes a longer period of time than

our online algorithm, and Fig. 4(d) and Fig. 5(d) verifies our

advantage in terms of accuracy for each unit of time×cost.

3) Impact of V and data shifts: Fig. 6(a) and Fig. 6(b)

show that a larger V (see (15)) leads to a higher accuracy

8

but a larger cost since more data points are needed to be

processed; and thus the discard rate will drop. Fig. 6(c)

demonstrates the impact of different cost budgets and the

labels “X2” and “X3” represent doubled and tripled cost

budgets respectively, under which the accuracy increases by

7.2% to 9.5%, and EdgeC3 can achieve higher accuracy over

the baselines. Finally, Fig. 6(d) shows the accuracy under

different data shift degrees with the same cost budget. With

the increase of data shift, the accuracy decreases; and EdgeC3

improves the accuracy by 6.41% againt OffloadingDynamic,

12.3% against RandomAdaptive, and 14.9% against Ran-
domDynamic, respectively. This emphasizes the value of co-

optimized aggregation frequency and dynamic offloading.

VII. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we propose EdgeC3 that jointly optimizes

the frequency of model synchronization and dynamic data

offloading, navigating the trade-off between model accuracy

and the long-term cost. We derive an upper-bound of the train-

ing error with respect to adjustable aggregation frequencies

and data shifts. To learn the best aggregation frequency un-

der uncertain future offloading decisions, we integrate online

learning into an extended Lyapunov Optimization algorithm.

We theoretically and experimentally demonstrate the efficacy

of our method. For future work, we will further integrate data

selection to enhance its robustness in edge ML systems.

REFERENCES

[1] M. Ranzato, G. E. Hinton, and Y. LeCun, “Guest editorial: Deep
learning,” Int. J. Comput. Vis., vol. 113, no. 1, pp. 1–2, 2015.

[2] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Commun. Surv. Tutorials, vol. 19, no. 4, pp. 2322–2358, 2017.

[3] J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen,
and J. S. Rellermeyer, “A survey on distributed machine learning,”
CoRR, vol. abs/1912.09789, 2019. [Online]. Available: http://arxiv.org/
abs/1912.09789

[4] J. Gama, I. Zliobaite, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A
survey on concept drift adaptation,” ACM Comput. Surv., vol. 46, no. 4,
pp. 44:1–44:37, 2014.

[5] S. Wang, S. Hosseinalipour, V. Aggarwal, C. G. Brinton, D. J.
Love, W. Su, and M. Chiang, “Towards cooperative federated learning
over heterogeneous edge/fog networks,” 2023. [Online]. Available:
https://arxiv.org/abs/2303.08361

[6] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics, AISTATS 2017, 20-22 April 2017, Fort
Lauderdale, FL, USA, ser. Proceedings of Machine Learning Research,
A. Singh and X. J. Zhu, Eds., vol. 54. PMLR, 2017, pp. 1273–1282.
[Online]. Available: http://proceedings.mlr.press/v54/mcmahan17a.html

[7] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for privacy-preserving machine learning,” in proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
2017, pp. 1175–1191.

[8] H. T. Nguyen, V. Sehwag, S. Hosseinalipour, C. G. Brinton, M. Chiang,
and H. V. Poor, “Fast-convergent federated learning,” IEEE Journal on
Selected Areas in Communications, vol. 39, no. 1, pp. 201–218, 2020.

[9] S. Hosseinalipour, S. S. Azam, C. G. Brinton, N. Michelusi, V. Ag-
garwal, D. J. Love, and H. Dai, “Multi-stage hybrid federated learning
over large-scale d2d-enabled fog networks,” IEEE/ACM Transactions on
Networking, 2022.

[10] S. Wang, Y. Ruan, Y. Tu, S. Wagle, C. G. Brinton, and C. Joe-Wong,
“Network-aware optimization of distributed learning for fog computing,”
IEEE/ACM Trans. Netw., vol. 29, no. 5, pp. 2019–2032, 2021.

[11] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “When edge meets learning: Adaptive control for resource-
constrained distributed machine learning,” in IEEE INFOCOM. IEEE,
2018, pp. 63–71.

[12] ——, “Adaptive federated learning in resource constrained edge com-
puting systems,” IEEE J. Sel. Areas Commun., vol. 37, no. 6, pp. 1205–
1221, 2019.

[13] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Distributed deep
neural networks over the cloud, the edge and end devices,” in 2017
IEEE 37th international conference on distributed computing systems
(ICDCS). IEEE, 2017, pp. 328–339.

[14] C. Hu, W. Bao, D. Wang, and F. Liu, “Dynamic adaptive dnn surgery
for inference acceleration on the edge,” in IEEE INFOCOM. IEEE,
2019, pp. 1423–1431.

[15] L. Liu, M. Zhao, M. Yu, M. A. Jan, D. Lan, and A. Taherkordi,
“Mobility-aware multi-hop task offloading for autonomous driving in
vehicular edge computing and networks,” IEEE Transactions on Intelli-
gent Transportation Systems, 2022.

[16] I. Alghamdi, C. Anagnostopoulos, and D. P. Pezaros, “Data quality-
aware task offloading in mobile edge computing: an optimal stopping
theory approach,” Future Generation Computer Systems, vol. 117, pp.
462–479, 2021.

[17] F. Farahbakhsh, A. Shahidinejad, and M. Ghobaei-Arani, “Multiuser
context-aware computation offloading in mobile edge computing based
on bayesian learning automata,” Transactions on Emerging Telecommu-
nications Technologies, vol. 32, no. 1, p. e4127, 2021.

[18] N. Le Roux, M. Schmidt, and F. Bach, “A stochastic gradient method
with an exponential convergence rate for finite training sets,” Pereira et
al, 2013.

[19] S. Shalev-Shwartz and T. Zhang, “Stochastic dual coordinate as-
cent methods for regularized loss minimization,” arXiv preprint
arXiv:1209.1873, 2012.

[20] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent
using predictive variance reduction,” Advances in neural information
processing systems, vol. 26, 2013.

[21] A. Defazio, F. Bach, and S. Lacoste-Julien, “Saga: A fast incremental
gradient method with support for non-strongly convex composite ob-
jectives,” Advances in neural information processing systems, vol. 27,
2014.

[22] B. Veloso, J. Gama, and B. Malheiro, “Self hyper-parameter tuning
for data streams,” in International Conference on Discovery Science.
Springer, 2018, pp. 241–255.

[23] Z. Zhou, S. Yang, L. Pu, and S. Yu, “Cefl: Online admission control,
data scheduling, and accuracy tuning for cost-efficient federated learning
across edge nodes,” IEEE Internet of Things Journal, vol. 7, no. 10, pp.
9341–9356, 2020.

[24] Y. Jin, L. Jiao, Z. Qian, S. Zhang, and S. Lu, “Budget-aware online
control of edge federated learning on streaming data with stochastic
inputs,” IEEE J. Sel. Areas Commun., vol. 39, no. 12, pp. 3704–3722,
2021.

[25] ——, “Learning for learning: Predictive online control of federated
learning with edge provisioning,” in IEEE INFOCOM, Vancouver, BC,
Canada, May 10-13, 2021. IEEE, 2021, pp. 1–10.

[26] X. Zhang, J. Wang, G. Joshi, and C. Joe-Wong, “Machine learning on
volatile instances,” 2020.

[27] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang,
D. Niyato, and C. Miao, “Federated learning in mobile edge networks:
A comprehensive survey,” IEEE Communications Surveys & Tutorials,
vol. 22, no. 3, pp. 2031–2063, 2020.

[28] “Edgec3: Online management for edge-cloud collaborative continuous
learning,” Tech. Rep. [Online]. Available: https://www.dropbox.com/s/
x5l7w8i9x1qi4d3/EdgeC3.pdf?dl=0

[29] E. Hazan et al., “Introduction to online convex optimization,” Founda-
tions and Trends® in Optimization, vol. 2, no. 3-4, pp. 157–325, 2016.

[30] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine learning, vol. 47, pp. 235–256,
2002.

[31] M. J. Neely, “Stochastic network optimization with application to
communication and queueing systems,” Synthesis Lectures on Commu-
nication Networks, vol. 3, no. 1, pp. 1–211, 2010.

[32] D. Raca, J. J. Quinlan, A. H. Zahran, and C. J. Sreenan, “Beyond
throughput: A 4g lte dataset with channel and context metrics,” in
Proceedings of the 9th ACM multimedia systems conference, 2018, pp.
460–465.

9

