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Abstract—Today’s Internet must support applications with increasingly dynamic and heterogeneous connectivity requirements, such
as video streaming and the Internet of Things. Yet current network management practices generally rely on pre-specified network
configurations, which may not be able to cope with dynamic application needs. Moreover, even the best-specified policies will find it
difficult to cover all possible scenarios, given applications’ increasing heterogeneity and dynamic network conditions, e.g., on volatile
wireless links. In this work, we instead propose a model-free learning approach to find the optimal network policies for current network
flow requirements. This approach is attractive as comprehensive models do not exist for how different policy choices affect flow
performance under changing network conditions. However, it can raise new challenges for online learning algorithms: policy
configurations can affect the performance of multiple flows sharing the same network resources, and this performance coupling limits
the scalability and optimality of existing online learning algorithms. In this work, we extend multi-armed bandit frameworks to propose
new online learning algorithms for protocol selection with provably sublinear regret under certain conditions. We validate the optimality
and scalability of our algorithms through data-driven simulations and testbed experiments. (An extended abstract of this work was

accepted by IEEE ICNP as a short paper Zhang et al. (2019)).

Index Terms—Multi-armed bandits, network protocol selection, online algorithms, online learning

1 INTRODUCTION

HE Internet today is diversifying in terms of both the
Tapplications and devices that it aims to support, as well
as the means for doing so. Applications like augmented real-
ity, for instance, require increasingly low latencies [2], while
the Internet-of-Things has dramatically expanded the range
of devices connected to the Internet [3]. Fifth-generation
(5 G) wireless networks are simultaneously predicted to inte-
grate several different access frequencies in an effort to boost
capacity and coverage [4], [5]. To support devices and
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applications with different quality-of-service (QoS) require-
ments, today’s 5 G radio access networks (RAN) group the
user applications into different service categories, i.e., eMBB,
mMTC, and URLLC, so that distinct radio resources can be
reserved (e.g., via network slices) in isolation from the alloca-
tion for devices served by other service classes [4], [6], [7]. Yet
itis still far from clear how the network can enforce flow-spe-
cific heterogeneous requirements for each application shar-
ing limited resources on heterogenous network links, e.g.,
application flows supported by the same service class tra-
versing the 5 G RAN and/or the backhaul networks [8].

Current network management practices generally rely on
static pre-configurations, e.g., pre-specifying the routing
algorithms for each router used to determine the paths that
flows take in a network [9] or allowing users to specify the
routes themselves (e.g., custom routes in Microsoft Azure’s
virtual networks [10]). Initiatives like network functions vir-
tualization (NFV) and the RAN (radio access network) Intel-
ligent Controller [11] aim to enable more flexible policies,
but they still require manual intervention to change the pre-
set network policies [12]. Moreover, it is unclear which poli-
cies can actually optimize over all possible scenarios and
combinations of flow requirements. Comprehensive models
for flow performance under different protocol choices often
do not exist or are difficult to adapt to newly developed pro-
tocols, as we detail in example use cases below.

In this work, we recognize that pre-specified policies are
likely insufficient to handle all possible scenarios. Instead,
dynamically network management policies that can adapt
to the non-stationary protocols’ efficiency in processing
flows and the changing network environment will improve
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TABLE 1
Outline of Formulation Use Cases

Use case  Topology Example protocols Selection type
5G Single Control channel size Per-flow, Per-link

link
MAC Single CSMA/CD, CSMA/CA Per-link

link
Network Arbitrary  Slice resource reservation, Per-flow, per-link over
slicing priority class domains
Transport  Arbitrary TCP CUBIC, TCP Reno, UDP  Per-flow, per-link w/
layer proxies

the network resource utilization and overall gain of co-exist-
ing application flows. While a vast array of possible policies
at various layers of the stack can be used for different types
of networks, we focus on optimizing the configuration of
protocols for flows on each link of a given network. The
decision variables of the protocol configuration can include
the types of pre-configured protocols (e.g., TCP/UDP,
CSMA/ALOHA, or a priority class) and/or parameters of a
given type of protocol (e.g., sending rate of TCP or backoff
time of a wireless channel access protocol). We suppose that
a given set of protocol configurations is available and that
each flow’s achieved performance depends on the configu-
ration combination chosen for all flows on shared links, in
an unknown manner that depends on prevailing link condi-
tions. Unfortunately, there are also no analytical flow
resource competition models showing this dependency or
theoretically performance-guaranteed online algorithms
that can dynamically optimize protocols on each link with
time-varying unknown network characteristics (e.g., band-
width capacities). In this work, we develop new, model-free
algorithms that learn the unknown relationship between
protocol choices and flow performance under the presence
of the above-mentioned time-varying inputs. Finally, we
analytically and experimentally demonstrate that they learn
the optimal assignment of protocols to flows over time.

1.1 Use Cases: Optimized Protocol Selection
Different types of protocols may be selected by different
entities in a network, whether set on a link-by-link basis by
intermediate routers for all flows on the same link (e.g.,
choosing a MAC protocol for a wireless link), or by each
flow’s source for its entire path (e.g., TCP/UDP protocols).
We consider both scenarios, as exemplified by the use cases
below (discussed in more detail in Table 1 of Section 2).

Configuration of 5 G wireless networks is likely to require
machine learning algorithms that can manage their high
degree of configuration complexity [5]. For instance, one
might determine the size of an uplink control channel
between each UE (user equipment) and a cellular base sta-
tion. While a larger control channel leads to less spectrum
available for data transmission, 5 G control channels may
carry significant amounts of information about a UE’s cur-
rent condition that might be used to further optimize its ser-
vice, e.g., with custom beamforming or scheduling. The
control channel size would be determined individually for
each UE, i.e., on a per-flow basis if each UE is associated
with a single flow on the network.
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MAC-layer protocol selection for individual flows natu-
rally takes place on a link-by-link basis, and encom-
passes protocols such as error correction modes, sensor
duty cycles, or re-transmission rates for dropped pack-
ets [13]. While models exist to analyze the performance
of MAC protocols, the actual realized performance may
be hardware-specific and thus difficult to predict in prac-
tice [14]. Moreover, new protocols not covered by cur-
rent models may be required to handle the requirements
of emerging applications like smart grids or cities [15].
Automated protocol selection can lessen the need for
precise analytical models in such scenarios.

Network slicing, envisioned for next-generation 5 G archi-
tectures [7], reserves shares of network resources for flows
with strict performance requirements, e.g., AR and VR (aug-
mented and virtual reality) applications. Choosing the right
configuration to support these requirements, however,
involves complex tradeoffs. For instance, allowing slices to
share some physical resources makes the network more effi-
cient but risks interference from other slices [7]. Flows that
share a slice may also attempt to further optimize their per-
formance, e.g., AR and VR applications may use protocols
that are specialized to particular network conditions,
including rate adaptation, caching, and transport control
specializations [2]. Automated network management is one
solution to the resulting configuration complexity. These
protocols could be set by the AR/VR devices or by nodes or
servers within the network. We validate our proposed algo-
rithms in experiments on TCP protocol selection for AR
applications in Section 5.2.

Transport-layer protocol optimization is a long-standing
challenge that exemplifies the value of our learning-based
approach. Indeed, we validate our algorithms with trans-
port-layer protocol selection experiments in Section 5. It is
well known that choosing different transport-layer proto-
cols will affect flow performance, e.g., inducing different
bandwidth allocations [16], but no comprehensive theoreti-
cal models exist for the bandwidth allocation when flows
use an arbitrary combination of protocols, which can make it
difficult to encode the optimal protocol selections a priori.
Existing models may also exclude new congestion control
protocols that propose to handle various network condi-
tions and application requirements, further motivating a
model-free learning approach [17]. In this scenario, the pro-
tocols are set by the flow sources or network proxies at
intermediate nodes [18], [19], [20].

These examples fall into three types of protocol selection:
per-link selection, or choosing the same protocol for all flows
on a link (MAC protocols), per-link and per-flow selection, or
choosing a protocol for each flow on a given link (wireless
control channel size), and per-flow selection, choosing a pro-
tocol for each flow on its entire path through the network
(TCP/UDP, network slicing). In this work we address the
challenges that arise in all three selection types.

1.2 Our Contributions

We derive and validate, analytically and empirically, the
first algorithms that can learn the optimal assignment of network
protocols that maximizes aggregate flow performance. We define
“performance” as the total flow completion time, but our

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on August 21,2023 at 06:27:14 UTC from IEEE Xplore. Restrictions apply.



4824

framework generalizes to other objectives. In doing so, we
solve several technical challenges:

o Unpredictable, Time-varying Network Conditions. The
exact relationship between protocol selection and
flow performance depends on the presence of back-
ground traffic (for which we do not control the pro-
tocols used) and network conditions: for example,
conventional TCP may not perform well on an unre-
liable wireless link [21], and protocol performance
on an overlay link may be affected by (unknown)
changes in the underlying physical topology. Since
the exact network conditions may not be known, our
algorithm must be able to dynamically manage the
network flows arriving at different future time
points by optimizing the protocol selection.

o  Competition Between Different Flows. When different
protocols may be used for different flows, the choice
of protocol for one flow affects the performance of
other flows on the same link. This coupling is partic-
ularly hard to manage given the absence of models
for how protocol choices affect flow performance
and the nonlinearity of our objective with respect to
the protocol decisions.

o A Large set of Protocol Choices. The total number of
possible protocol assignments to flows is exponential
with the number of active flows on each link of a
given network. Thus, we cannot sample all possible
protocol assignments if directly following the exist-
ing online learning approaches, such as multi-armed
bandit (MAB) framework [22]. Instead, we exploit
the properties of the optimal protocol selection to
reduce the sampling complexity.

We take the first steps towards meeting these challenges

through the following technical contributions.

First, we formulate a total flow completion time minimi-
zation problem, which reveals the non-linearity of our
objective function w.r.t. the decision variables (protocols)
over the entire life-time of each flow and the dependency
between the chosen protocols for different flows at any
given time. This formulation is general enough that it can
cover multiple use cases summarized in Table 1. We then
construct a stochastic protocol interaction model and formu-
late the per flow transmission rate achieved by each proto-
col into three intuitive multiplicative parts that can be
arbitrary and unknown: a bandwidth partition weight of
the applied protocol, the total bandwidth utilization of the
protocol combination, and the total available bandwidth
capacity of our controlled flows. This model provides a
foundation to understand the underlying effects of volatile
network conditions on the protocol performance (see our
first challenge) and models the interactions between differ-
ent network flows (our second challenge).

Second, leveraging the above performance model, we pro-
pose a new extension of the multi-armed bandit (MAB)
framework. We show that per-link protocol selection falls
into conventional MAB models, but that per-flow protocol
selection does not. A natural way to handle per-flow protocol
selection is to view the selection of each feasible combination
of protocols chosen for all flows in the network as an “arm”
to be pulled. However, conventional MAB algorithms scale

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 8, AUGUST 2023

poorly with the number of arms (i.e., combinations of proto-
cols); and they do not account for (1) a completion time objec-
tive, which is a highly nonlinear function of the protocol
performance that also depends on past protocol selections,
or (2) constraints (from bandwidth capacities) on the achiev-
able reward that may be arbitrary and unknown. We extend
the conventional MAB algorithm called UCB in Section 3.2
into a new online algorithm that can overcome the above
challenges. The key idea is to select arms from a largely
reduced set of protocol combinations by exploiting the prop-
erties of the optimization problem and to carefully decode
each arm’s “reward” from the transmission rates achieved
by all present flows.

Third, we show in Section 4 that our algorithm asymptoti-
cally minimizes the total flow completion time under reason-
able assumptions. Specifically, for the case where the total
bandwidth utilization on any given link is uniform (indepen-
dent of the decision variables) and the performance of differ-
ent protocols are quantitatively upper-bounded, we prove
that the regret, i.e., expected gap between our algorithm
against the offline optimum, is logarithmic in the time hori-
zon (Theorem 4.1) or the number of flows which arrive and
depart onto a path at arbitrary times (Corollary 4.2). The
regret is then improved for two other cases with different
additional assumptions (Theorem 4.3 and 4.4). For the case
with non-uniform bandwidth utilization, while the regret for
arbitrary flow arrivals is intractable, we analyze the regret of
a special case with at most two flows alive simultaneously
(Theorem 4.5). These theoretical results are based on non-
trivial extension of the analysis of existing MAB algorithms
and online scheduling algorithms [23].

Finally, in Section 5, we validate our algorithms’ optimal-
ity and scalability with experiments on transport protocol
selection, showing that we achieve a 20% to 60% improve-
ment over heuristic selection algorithms. To do so, we
implement our learning algorithm on an Amazon EC2
testbed and a computing cluster at Duke University.

2 PROBLEM FORMULATION

To formalize our problem, we consider a communication
network with a pre-determined topology described by a
graph G(V, £), where V represents the nodes, correspond-
ing to the locations of routers in the network, and £ repre-
sents the links. We divide time into discrete slots, each of
which lasts € > 0 seconds. For our use cases, ¢ would likely
be on the order of tens of seconds (cf. our transport protocol
experiments in Section 5.2). Note that the topology may be a
simple star topology of multiple devices connecting to a
wireless base station, or a more complex overlay network in
which the “links” are virtual ones with unknown underly-
ing physical topologies (cf. Table 1).

Suppose n flow requests arrive at the network over the
lifetime of the system, T'. Let ¢; denote the arrival time of
each flow i € [n]. Flows arriving within a time slot are
scheduled at the beginning of the next time slot. Each flow ¢
has a source and destination in V, and a fixed path P; that is
exogenously determined at the time of its arrival. Each P;
consists of a set of nodes (€ V), including a source and a des-
tination node; and a set of links (€ £) connecting them. Each
flow 7 also has a fixed size 7;, i.e., the amount of data (in
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Fig. 1. A Simple Example of Selected Protocols.

bytes), to transfer along P;. The flows, for instance, could be
downloads of files like computation results or AR holo-
grams. We assume the flow sizes are known when the pro-
tocols are chosen, which is reasonable if a node assigns
protocols for its existing incoming or outgoing flows [18],
[19], [20]. On each link, there are also flows with unknown
data sizes in the background that we cannot control, which
could compete for the bandwidth with our controlled flows
i =1,...,n when they co-exit. Due to the presence of back-
ground traffic, each link [ has an unknown bandwidth
capacity, denoted by By, (bps) in each time slot ¢.

Protocol Selection. Our algorithm chooses the protocols
for each flow i on its path, P;. To accommodate the per-
link, per-flow, as well as per-link and per-flow protocol
selection types discussed in Section 1.1, we suppose we
have a total of A protocol choices on each link for each
flow. Let x;;,,; denote a binary indicator variable, represent-
ing whether protocol m € [M] is chosen (x;,: = 1) for flow
7 on link [ at time ¢, or not (z;,,; = 0). Since each flow can
use only one protocol on each link at a time, we constrain
2 meiy) Timt =1, VL € Pyi € [n],Vt € [T]. We can similarly
enforce choosing the same protocol for all flows on a given
link or all links on a given flow’s path. As shown in Fig. 1,
in a simple IoT network with hybrid networks represented
by black network edges: wired links between the servers,
gateway, and base-station; a wireless link from the base-
station to either mobile device. Suppose there are two
flows, shown as Flow 1 and Flow 2 with the respective
flow sizes in bytes, co-existing at the network with a
shared link between the gateway and base-station. Flow 1
is a transfer of a small data batch requested from a VoIP
application run on the mobile phone while Flow 2 transfers
a large dataset collected by a sensing application run on a
vehicle. We might want to apply DCCP and UDP on Flows
1 and 2 on the wireless links respectively and choose dif-
ferent TCP variants for the two flows at the wired links
depending on our estimated transmission rates achieved
by each flow under their applied protocols and our optimi-
zation goal, e.g., we want the smaller flow to be processed
as fast as possible rather than aiming at a high extent of
fairness which should be guaranteed by using the same
TCP protocol on the shared link instead. Such hop-by-hop
protocol implementation is an example of per-link and
per-flow protocol selection type in Section 1.1 and can be
realized using proxies as we discuss shortly after. In addi-
tion, if the network characteristics change in future time
points, the above protocol combination may need to be
changed dynamically.

We next briefly discuss how our formulation relates to the
four use cases discussed in Section 1.1. Table 1 summarizes
the network topology and example protocol choices consid-
ered in each use case. We assume that continuous protocol
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choices, e.g., the 5 G control channel size and resources allo-
cated to flows in a slice, are discretized.

In our 5G and MAC scenarios, we can view a “link” as a
single wireless link to a base station, shared between several
UEs connected to this base station. Network slice configura-
tions and transport protocols, on the other hand, generally
are not changed at every physical link in a flow’s path, but
can be changed at some intermediate points. For instance,
network slices that cross multiple domains might need dif-
ferent configurations within each domain or even on wired
vs. wireless links [7] to enforce slice performance require-
ments. To capture these choices, we can view each domain
as a “link,” similar to links in overlay networks where the
overlay link may in fact consist of an arbitrary physical net-
work topology. Transport-layer protocols can similarly be
deployed on a link-by-link basis in overlay networks via
network proxies that forward packets on behalf of the
sender according to the best transport-layer protocol for the
next link, e.g., as Dropbox and Google do in their datacenter
networks [24], [25] or as may be needed for edge computing
applications where latency-sensitive traffic is sent over a
wireless link to an edge server proxy and then into the Inter-
net [26], [27]. In fact, we show in Section 5.2 that using dif-
ferent transport protocols on different links can
substantially improve performance.

Link transmission delay 8;(x;). Let 7y (x;;) denote the effec-
tive transmission rate achieved on link [ for flow ¢ at time slot
t, which is revealed after we choose the protocols on link /.
Let Aj; denote the set of alive flows on link [ at time ¢. As dif-
ferent flows may share one or more links and compete for
the bandwidth on each link, 7;;(x;) is a function of the deci-
sions xj;,,: over all protocols m and for all flows j € Ay. Let
8;1(x;) denote the transmission delay on each link [ of flow ¢
incurred by transferring a total of &; bytes of data, which is
defined as 8;(x) = maxy, <r<ioot - 132, ey €raw (Xiv) < 71;),
where 1(X) equals 1 if X is true; and 0 otherwise.

Total Completion Time Minimization. Let t;(x) denote the
completion time of flow 3, i.e., its arrival time plus the total
delay of serving flow i. We have 7;(x) = t; + maxjep,8i(X;) +
propogation and queueing delay. Since our protocol choices
do not affect the propagation and queueing delay, minimiz-
ing the flow completion time is equivalent to minimizing
the bottleneck transmission delay max;cp,8i(x;). We there-
fore formulate an online optimization problem as:

Minixmize 7;[74111;%?( 8i(xp) (1)
subject to: Y ris(xu) < B, VI € Py, € [n],t € [T] (2)
€Ay
Z Titmt = 17 \v/lepivie [n}’te [T} (3)
me[M]

The objective (1) indicates that we attempt to minimize the
total completion time of n flows, subject to a bandwidth
capacity constraint (2) on each link in each time slot; the last
constraint ensures only one protocol is chosen for each flow
on each link at each time. We can impose additional con-
straints such as iyt = Tjime, V1,7, 1, m,t to ensure that flows
sharing a link must use the same protocol, modeling the
er-link selection type.
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This formulation reflects our research challenges: both
8i1(x;) and r;;(x;) are unknown, time-varying and nonlinear
functions of the protocol choices of the coexisting flows of
flow i, accounting for competition between flows, and both
rix and By are unknown. Indeed, the bandwidth capacity
By, on each link may even be arbitrarily chosen by the envi-
ronment without any statistic patterns over time. Thus, the
problem is complex and difficult to solve. In some cases,
prior models exist for 7, e.g., network utility maximization
(NUM) frameworks for certain MAC and TCP protocol var-
iants [28], [29]. However, as noted in Section 1.1’s use cases,
such models are not available for all protocols and may not
be able to handle unknown bandwidth capacities, so in our
formulation we assume the r;; are unknown random varia-
bles. To further help with the readability of the formulation
and the algorithm design in the following section, we list
key notation in Table 2.

3 ONLINE PROTOCOL SELECTION

Our key insight in solving the optimization problem (1)-
(3) is to understand and exploit the relationship among
transmission rates, joint protocol decisions of flows, and
bandwidth capacities. As existing works do not explicitly
model these relationships, we ask: Is there a pattern in the
transmission rates of flows using different protocols on a
link? If so, can we formulate the transmission rate func-
tions r;;;(x;) in a general form that can be learned from his-
torical observations of the transmission rates? How can we
use these learned functions to design a scalable online
algorithm for protocol selection, without knowing the
bandwidth capacities?

Driven by these questions, we formulate a general stochas-
tic model to characterize the transmission rate fluctuations in
Section 3.1. We then adapt a multi-armed bandit approach to
predict the parameters of transmission rate functions for each
protocol in Sections 3.2 and 3.3. These predictions interact
with an outer online protocol selection algorithm: the choices
of which protocols to predict are driven by the goal of mini-
mizing the overall completion time. Section 4 shows that our
algorithms are asymptotically optimal under reasonable
assumptions. We show that our algorithm empirically outper-
forms heuristics in more general scenarios in Section 5.

3.1 A Stochastic Model of Protocol Interactions

We first define a model of how the link bandwidth is
divided between coexisting flows, depending on the proto-
cols they use. As shown in (4) below, the total transmission
rate achieved by all flows on a link will be the bandwidth
capacity By scaled by a utilization ratio wu(xy, By) (< 1)
which depends on Bj; and the protocol combination (x;)
used on [ in ¢; the transmission rate achieved by each flow
will be proportional to the weight of its corresponding proto-
col. Let e,, denote a singleton representing that only proto-
col m is selected. To account for fluctuations in the
transmission rates achieved by each protocol, we assume
that on each link /, the weight vector (wy(e1), ..., wy(enr)) is
ii.d. drawn from an unknown distribution, e.g., due to fluc-
tuations in wireless signal strength or routing in an overlay
network. Non-stationary distributions of the weight vector
with a bounded number of abrupt change points can be
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TABLE 2
Notation Table

i€ [n] index of flows

m € [M)] index of protocols

P; path that ¢ traverses

Tilmt choose (=1) m for i on link [ at ¢ or not (=0)

7 size (in bits) of flow

8it(+) transmission delay of i on [

7;(+) completion time of flow ¢

By bandwidth capacity of [ at ¢

rie() transmission rate achieved by i on [ at ¢
wi(+) weight in achieving rates of protocol / at ¢
u(Xgt, Byt) total bandwidth utilization of flows on [ at ¢

handled based on existing methods and will be discussed in
Section 3.2. We can then find the transmission rate for each
flow on each link:

wyy (L )u(xse, By) By
Zi’eAlt wi (Zyu)
where: u(x, Br) < 1,Yxy,l € Py,i € [n],t € [T]

(4)
(5)

i (Xu) =

Our model for ry; is quite general, as we do not impose
any conditions on the distributions of the weight vector
aside from requiring that (4) is well-defined. The weight
parameters reflect the relative difference of each protocol in
competing for the bandwidth capacity, compared with
other protocol choices. In a practical system, the transmis-
sion rate must be jointly affected by more than one factors,
such as the bandwidth capacity of the link, the number of
application flows co-exist on the same link, and also the rel-
ative difference of the protocols themselves, e.g., different
congestion avoidance parameters and congestion control
strategies within the protocols. We separate the transmis-
sion rates into different factors for better tractability to rea-
soning the impact of different factors that affect our
transmission rates. We next explain how it captures the rela-
tionships between the protocol choices and achieved flow
rates in Table 1’s use cases.

In per-flow protocol selection (control channel size, net-
work slicing, and transport layer protocols), both the weights
and utilization are affected by the protocol choices. For
example, the control channel sizes chosen by all flows (xy)
determine the overall utilization u(xy, By;), which represents
the total amount of resources available to transmit payload
data. The weights wy (Z;) for each flow ¢, which depend on
the control channel size chosen for each flow, would then
model the resources allocated to that particular flow, given
the information conveyed in its control channel. In network
slicing, the “protocol” would be a configuration for a given
slice; e.g., the resources reserved for it, in which case the
weights wy(Z;;) would simply be the fractions of resources
allocated to each flow; or the priorities assigned to slices that
share wireless PHY/MAC resources [7], which would then
determine the weights wy (Z;;;) according to the MAC sched-
uling algorithm used for that link (e.g., weighted propor-
tional fairness). Finally, in the transport layer use case the
weight model is consistent with NUM models of bandwidth
allocation but can capture more TCP variants [28], [30]. The
utilization factor can account for known effects where differ-
ent combinations of TCP protocols utilize the link to greater
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or lesser degrees [18], [19], [20], [31]. Fluctuations in the
weights can model changes in how the flows interact on the
underlying topology of an overlay link, which is likely not
observable in practice.

In per-link selection where all flows on a link share the
same protocol, the weights wy (Z;;) of the protocols chosen
for each flow cancel out as they are the same for all flows.
Thus, the choice of protocols only affects the achieved rate
ri(xy) in (4) through the total link utilization u(xy, By). Uti-
lization is, for instance, a standard metric for MAC protocol
evaluation [13], [32] as it measures how the protocol handles
potential collisions. The capacity By may be thought of as a
theoretical maximum link throughput.

3.2 Protocol Selection With Uniform Utilization

In this section, we assume uniform utilizations u(xy, By;) for
all protocol choices but allow By, to be adversarially chosen
(arbitrarily variant over time and across links). We generalize
the resulting algorithm to non-identical u(xy, By) in Sec-
tion 3.3. We only consider per-flow selection in this section,
as all protocol choices yield the same performance in per-
link selection when we assume uniform utilization.

Algorithm 1. Online Protocol Selection via Learning
Bandwidth Competition — OPSBC

Input: GV, L), n, «

Oytput: x

nitialize:x =0, n’% =1,t =0
1: while time slot 1 < ¢ < T starts do
2: foreachlink! € £ do

3: Update 7;;; = the remaining size of each
alive flow i;

4: Update i* = argmin; 4, it ;

/* The flowwith the smallest

remaining sizeonl */
5: Choose (m*,m?) = argmin,, nECB (m,m/);

/* Choose the best protocol

combinationonl! */

6: Update zms = 1, 2,5, = 1,Vi #i%;

/* Given (m*,m’), choose the

dominant protocol m* for flow

i* and the inferior protocol m’

for other alive flows on/ */
7: Update n;,(m,m’) and n}:¢%(m*, m") using (7) ;
8: end
9: end

Algorithm Intuition. If the distributions of the weight vec-
tors wy and the current capacities By, are known, the prob-
lem (1-3) becomes a pure online decision making problem,
where we do not know the arrival times and sizes of future
flows and future bandwidth capacities. We then have the
following intuition: Minimizing the total flow time (1) is
equivalent to minimizing the number of alive flows at each
time. Therefore, at any time, the offline optimum would
make the flow with the shortest remaining time finish first
so as to reduce the number of alive flows, as formally shown
in the proof of Theorem 4.1 in our technical report [33].
Therefore, we propose to distributedly and greedily choose
the protocols on each link at each time so as to minimize the
remaining time of the flow with the smallest amount of un-
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transferred data on the link. This strategy has the advantage
of independently running on each node’s router (or even on
each link), simplifying its deployment.

Algorithm 1 formalizes our intuitions; we show its opti-
mality in Section 4. Here, T represents the total number of
time slots from the arrival of the first flow until the comple-
tion of the last (nth) flow, i.e.,, T = %, where T is the make-
span of the flows. Note that 7' does not depend on our
protocol choices when the bandwidth is fully utilized and
the flows have fixed sizes. Algorithm 1 does not require
knowledge of T, but T" will affect the algorithm performance
as shown in Section 4. In each time slot ¢ (every e seconds),
our algorithm has two parts: 1) learning: independently
predicting the weight vector on each link based on historical
samples; and 2) protocol selection: on each link, choosing
the protocol with the biggest estimated weight for the short-
est alive flow and the one with the smallest estimated weight
for all the other alive flows. The protocol selection is trig-
gered for all flows in the network at that time. One can also
run the algorithm less frequently by only selecting protocols
when a new flow arrives or an existing flow completes,
although this will delay the algorithm’s convergence
towards the optimum (cf. Corollary 4.2).

Distributed MAB Algorithm for Predictions. To predict the
weight vector, we utilize the MAB framework, where in
each round the learner chooses to play one of a set of arms
and then observes the reward resulting from this choice.
However, our protocol decisions do not directly map to
arms. If we call a protocol decision vector for all flows an
“arm,” we obtain M arms (|.A| represents the largest
number of coexisting flows), which is too large to effectively
sample. However, if we consider each individual protocol
decision on each link as an arm and the corresponding
weight as the reward, we cannot directly interpret the pro-
tocol weights as rewards. The reason is that we can only
observe the rates for each flow, r;;, at each time and thus
must infer the protocol weights from the r;; observations.
However, this inference is challenging when the bandwidth
capacities can vary over time, because the rates do not trans-
late into weights for protocols that are present at different
times under time-varying bandwidth capacities. For instance,
for a given link, we might observe 10 Mbps and 20 Mbps
achieved by protocols 1 and 2 at the first time and 50 Mbps
and 500 Mbps achieved by protocols 3 and 4 at the next
time. Since we only observe a subset of the available proto-
cols at each time, we cannot interpret (s, 25, 50 300) a5 the
rewards (weight samples) of these four arms.

To address the above concerns, for each link, we learn the
protocol performance independently and only observe the
weight ratio of each pair of protocols to predict the best and
worst protocols in expectation each time. By defining each
arm as a protocol pair, we obtain only |£| x M? arms. As
explained in the algorithm intuition, the optimal solution
uses only two protocols at a time for all alive flows, so there
is no need for us to observe arbitrary combinations of proto-
cols; it suffices to consider only protocol pairs. Let 1, (m, m')
represent the ratio of the average flow rates achieved by
two protocols m and m’ on link [ in time ¢, defined as:

average flow rate on 1 under m/ at t

(6)

/
m,m’) = :
e ) average flow rate on 1 under m at t
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Our learning strategy is thus to run a Lower Confidence
Bound (LCB) algorithm independently on each link to esti-

mate E[n,(m,m’)], which equals E[%} Let zy,(m, m’) be

the indicator variable which equals 1 if we choose the proto-
col pair (m, m’); and 0 otherwise. The LCB of E[n,(m,m')],

denoted by n=¢Z(m,m’), is defined as
t / /
')z (m, m
nECB (1, ) = >_v—1 My (m, m')zyy (m, m’)

Zi’:l Ly (m> m/)
alogt

Z;’:l xlt’(m7 ml)

(7)

Note that if there is a number (< T) of time slots in which
the distribution of the weight vector {wy(e;)})", abruptly
changes, one can adapt (7) to instead take the average of
ny (m,m') over a fixed-size horizon rather than the entire
history [34]. The algorithm pseudo-code and analysis are
omitted for brevity since they are not the core contribution
of this work.

Online Protocol Selection Based on Predictions. At time slot ¢,
on each link /, once we estimate E[n;, (m, m')] as n5“%(m,m’),
we choose the protocol pair (m,m’) that minimizes
nECB(m,m'). Such a pair is denoted as (m*,m’) (line 5 of
Alg. 1). Our strategy is to assign m* to the shortest alive
flow (indexed by i*) and m" to all the other alive flows (line
6), as discussed in the algorithm intuition above. By doing
so, we guarantee that the shortest flow gets the highest
transmission rate if our predictions are accurate. More for-
mally, we can show that:

Lemma 3.1. Let xj, and x;; denote our protocol decision matrix
and any other feasible protocol decision matrix at t, respec-
tively. Then, we have:

(|~Alt| — 1)w1t(emz,) + wlt(em*))l

Wit (em* )
—1

wy(Zire)
Wit (ﬁ:*h,)

o) = th<

>By| 1+

i \(i*}

(8)

= Ti*lt(xh,)7 X

In other words, the transmission rate achieved by the
shortest flow i* under our decisions at ¢ (x},) is no smaller
than it would have been under any other decision at ¢ (x;),
given the same decisions at other time slots. The proof fol-
lows immediately from the strategies in lines 5 — 6. Finally,
we apply our protocols to the alive flows, and observe the
transmission rates of each flow. We than update the LCB of
ni(m, m') according to (7) for use in the next time slot (line 7).

3.3 Protocol Selection With Non-Uniform Utilization
We now consider the case when the utilizations wu(xy, By)
are non-uniform. In per-link protocol selection, x;
degrades to a vector of the same protocol decision for all
flows on a given link. Since we do not control the priorities
of different flows in this case, our goal becomes to learn the
protocol on each link that can achieve the highest band-
width utilization u(x;, By;). We can easily modify Algorithm
1 to distributedly predict the expected delay per bit (the
“reward”) under each protocol choice (the “arm”) for each
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link using a similar LCB technique, and then assign the pro-
tocol with the lowest reward for all flows to use on the link.
We then see that this formulation reduces to the traditional
LCB framework [35], and thus can be shown to converge to
the optimal protocol selection in the sense of achieving a
O(logT) regret over T time slots relative to selecting the
optimal protocol in each time slot. We omit the formal per-
formance analysis for reasons of space. We test our algo-
rithm performance for this case in Section 5.1.

In per-flow protocol selection, letting u(xy, By;) and thus
the total achieved rate depend on our protocol choices fur-
ther complicates the problem of optimizing the total com-
pletion time. Even if we know the weight distributions,
following Algorithm 1’s intuition to choose the protocol
with the highest relative weight for the shortest alive flow
may lead to a low bandwidth utilization for all flows on the
link and, depending on how much the utilization varies
with the protocol choices, may even result in a low actual
achieved rate for the shortest alive flow. To account for
these effects, we assume that By is i.i.d. over time for each
link and then adapt our Algorithm 1 to learn the actual rate
achieved (as defined in (4)) by flows using the dominant pro-
tocol in each pair of protocols, instead of the ratio of the pro-
tocol weights. Note that the achieved rate accounts for the
bandwidth utilization, which is determined by the entire
selected protocol combination, and the assumption of i.i.d.
capacity mitigates the discrepancy between the rate samples
of possibly different protocol sets chosen at different times
(recall our four-protocol example in Section 3.2). For proto-
col pair (m,m’), the dominant protocol m is the one that
incurs a smaller transmission delay per bit; we define
d=CB(m,m’) as the LCB of the link transmission delay per
bit (the inverse of the transmission rate) of protocol m. For-
mally, we replace Line 5 of Algorithm 1 with:

= argmin d.“%(

(m,m/)

Choose (m*,m’) m,m’).

9)

Intuitively, we would expect this algorithm to yield the
optimal protocol selection for a single path network if the
utilization does not vary much with the protocol choice and
thus our problem is close to that in Section 3.2, which Algo-
rithm 1 solves optimally. In Section 4.4, we provide theoreti-
cal results to demonstrate this intuition.

4 PERFORMANCE GUARANTEES

In this section, we provide theoretical performance bounds
for Algorithm 1 when all flows follow the same path, e.g.,
slices might traverse the same sequence of network
domains, or the “network” might be a single wireless link
between Internet-of-Things or mobile devices and an edge
server, as in the 5 G and MAC use cases in Table 1. We vali-
date our algorithms on AR hologram transmissions between
end devices and an edge server in Section 5.2. For the case
with uniform utilization ratio u(-), our theoretical guaran-
tees hold for both ii.d. unknown and arbitrarily unknown
bandwidth capacities. We additionally propose and analyze
the performance of two variants of Algorithm 1: one
designed to speed up the learning rate by leveraging back-
ground traffic (Section 4.2), and one designed to handle the
case where the weight vector wy for link I depends on the
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link capacity By (Section 4.3). Finally, theoretical results for
arbitrary utilization u(-) are given in Section 4.4.

4.1 Regret Analysis for Uniform Bandwidth
Utilization

We evaluate our algorithm by upper-bounding its Regret,
ie., the expected difference of the total completion time
between that achieved by our algorithm and the offline opti-
mum, an omniscient algorithm that has perfect knowledge
of: (1) the arrival times and sizes of all flows, (2) the band-
width capacities over all time slots, and (3) the distributions
of weight vectors. Formally, we define

Regret = E Z 7;(x;)| —minE Z 7;(x) (10)

i€n] i€[n]

The basic idea is to first evaluate the performance of our
algorithm when we have accurate predictions of the
weights but have no information of future flows and
bandwidth capacities; and then upper-bound the differ-
ence between the algorithm performance with known
weight vector distributions and one without any prior
knowledge. We will use wy,, and wy(e,,) interchangeably
for convenience.

In the following, we upper-bound the gap between the
total completion time with our algorithm and with the
expected optimum for the scenario where flows take the
same path. All missing proofs of our theorems and the cor-
ollary can be found in our technical report [33].

Theorem 4.1. Let By, and By, respectively denote the largest
and smallest capacity over all links over all time, wyq, and
Wpin denote the largest and smallest expected weights over all

protocols and all links, and i7" = max,, ,, E[4=]. If the

Witm!™ o

. . e B, n
weight vector for each link is i.i.d., and we have —Bllf < s <
t 14

]f?l;’ V(1) : Byy > By, t € [T, then the regret of our algo-
rithm O PSBC will be upper-bounded by

1) (GB7rzazw7rLa1:|P|M210g T) 7

2
Bmm WininMnin

The proof is given in Appendix C, available in the online sup-
plemental material, using the lemmas introduced in
Appendices A, which can be found on the Computer Society
Digital Library at http:/ /doi.ieeecomputersociety.org/10.1109/
TMC.2022.3162880, and B, available in the online supplemental
material.

The last assumption in Theorem 4.1 indicates that the rel-
ative competence (weights) of different protocols do not
vary too much across links with respect to their bandwidth
capacities. For example, if links [ and ! have bandwidths of
1 GB/s and 10 GB/s respectively, then this assumption
indicates that, if on link I, the best protocol can achieve 10
times the rate of the worst protocol, then the best protocol
on link ' cannot have more than 100 times the rate of the
worst protocol on !'. This assumption is reasonable in realis-
tic settings and technically implies that all the flows have
the same bottleneck link under our protocol choices.
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Implications. Theorem 4.1 shows that the regret bound is
quadratic in M and linear in |P|, a vast improvement over
the MMIPI possible assignments if directly applying the
MAB framework. Note that elog T' = %, and we see that a
higher learning rate (a larger 7') leads to a smaller regret: as
T — oo, implying an infinite number of opportunities to
learn the bandwidth weights, the regret converges to 0.
However, in practice, a higher learning rate may bring more
frequent protocol changes. Thus, we can also only update
protocol choices when flows arrive or depart, leading to the
following regret bounds:

Corollary 4.2. If any algorithm can only select protocols when
either new flows arrive or old flows complete, we can adapt
Alg. 1 to be triggered by flows” arrivals and departures, instead
of updating the flow decisions in each time slot. If y denotes the
average flow arrival rate, the resulting regret will be upper-

bounded by O(Bma:r,“’ma:r ‘P‘]\JQI()g '"') .

YBiminWminn min
The proof is given in Appendix D, available in the online
supplemental material.

4.2 Improved Theorem 4.1 Using Background

Traffic

We next show that Theorem 4.1's regret bound may be
improved with an alternative learning algorithm that lev-
erages background traffic. Suppose that in each time slot,
we can also observe (at least) one flow in the background
traffic (denoted by flow ;) that uses a fixed protocol,
denoted by my (€ [M]). For instance, this flow could rep-
resent a constant stream of data from an IoT device to a
cloud or edge server. We take this flow as a “reference”
flow against which we can compare protocol perfor-
mance: specifically, we track the ratio of the transmission
rate gained by using each individual protocol m to that
gained by using my, rather than updating the prediction
of each pair of protocols each time. This procedure
reduces the number of arms by a factor of M compared
to Algorithm 1.

More formally, for each ! and t, we define 7,(en) =
Ti(emg) _ By (emg) _ @ie(emy)
Tilem) — Bpwilem) — @plem)
age rate achieved by flows using protocol m on [ in ¢. Since
my is always present, we can finally have a good estimate of
“’lt("mo) “~’lt(‘3mo> 7“lt(‘3mo>
wy(er) 7 wyleg) 7777 wylenr)
tions of 7 (e,), lines 5 and 6 of our Algorithm 1 simplify as
follows: We assign the protocols with the lowest and high-
est 75%%(e,,) to the shortest alive flow and all the other
flows, respectively. This strategy can also guarantee that
when predictions are accurate, the current shortest flow
gets the highest rate. Since we compare the protocols by
independently learning the relative performance of each
protocol compared with the protocol mg, the number of
arms is only M x |£|, and this adaption leads to a smaller
regret shown as below, compared to Theorem 4.1. However,
this strategy requires us to observe the rates of at least one
flow that is always present in the network and always uses
the same protocol, which may not be present in practice.

Here, 7(e,;,) denotes the aver-

the vector (

). Based on observa-

Theorem 4.3. If all the flows share the same path, at least one
flow in the background traffic that persistently uses a fixed
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protocol can be observed, the weight vector for each link are i.i.d.

, and 51’,' < "5,,(,, < l;l", V(1) : Byy > By,t € [T, the regret

of OPSBC wzll be upper-bounded by O(—EB’”‘“ Winaz|PMlog h.

Binw,
minWmin nmm

4.3 Improved Theorem 4.1 for i.i.d. Capacities

If the weight vector @y depends on the link capacity By, the
assumption that @y, is i.i.d. chosen from a static distribution
will not hold unless By is also i.i.d. over time. In practice, it
is reasonable to assume that link bandwidth is also i.i.d.
chosen from an unknown distribution since the background
traffic is often determined by random flow arrivals and
departures. We show how to adapt Alg. 1 for this model.
Let 8y« (m*, m?) denote the inverse of the fraction of band-
width that protocol m* can get when protocol pair (m*, m")

[“’lt (Fmb }

is chosen. Instead of updating the LCB of E (line 7 in

Alg. 1), we instead sequentially update the empmcal aver-
age rate achieved by each protocol multiplied by the current
number of alive flows over all times that the protocol is cho-
sen to estimate 8- (m*, m’) and greedily choose the proto-
col pair with the smallest LCB of &, (m* m’). This
modified algorithm has the following regret:

Theorem 4.4. If all the flows share the same path, both the band-
width capacities By and the weight vector for each link arei.id.,

By
glz/z < 'ﬂ,,m <t V(') : By > By, t € [T, the regret of

OPSBC w1ll be upper-bounded by O(—fB magWmaz [P1Mlog T)

BinWmin M,

and

The proof is given in Appendix E, available in the online
supplemental material.

Compared to Theorem 4.1, our regret bound is linear
instead of quadratic in M, since we have M instead of M 2
arms.

4.4 Special Case Regret for Non-Uniform Utilization
We finally analyze the regret of Algorithm 1 with adapta-
tion (9) for two flows sharing the same bottleneck link.
Before that, we define the dominant throughput to be the
transmission rate achieved by flows using the dominant
protocol in any protocol pair.

Assumption 1. For the bottleneck link, given an optimal proto-
col pair p* that has the largest dominant throughput in expecta-
tion and any other protocol pair p, let: ri, ., and riq (v and
rq) denote the total transmission rates (dominant throughput)
of p* and p, respectively; r*(single) denotes the highest
expected transmission rate of any single present flow. Then, we
present the following assumption, which indicates that the dif-
ference in the total transmission rate is relatively small com-
pared to the difference in the dominant protocol. For any
protocol pair that is not the same as p*, we have:

)

Theorem 4.5. Let w4, and u,,;, denote the maximum and mini-
mum utilization ratio over all links. If there are always at most
two flows present in the network sharing the same bottleneck
link (the link with the least bandwidth capacity), both band-
width capacity and utilization ratio for any given link are 1 id.
over time, and we have Assumptions 1 and Bu <

T'total — Ttotul <2 (Tzﬂotal(s/ingle) (1 1)

Td—’l“d Tq
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TABLE 3
Increase in the Total Flow Time for
Heuristics Compared With OPSBC

Star network

# of flows Crab network
HomoPS Random HomoPS Random

100 33.7% 19.9% 41.9% 35.3%
200 37.3% 22.8% 46.2% 41.3%
300 38.9% 24.0% 48.2% 44.9%
400 39.3% 24.2% 49.2% 45.3%
500 39.7% 24.6% 50.1% 45.6%

'7,”(” Umaz (X],Blt) By

m =~ BZ:’ V(l,' l) : Bl’t Z Blta t, then the Tegret Of

our Algorithm 1 with adaption (9) will be upper-bounded by
O (GB"LLL.L u”L(Ll wIVL(L.L |P|]\/[210g (TUULLI.L /u’”t” )

Bmmumm Wnin ﬂmm

The proof is given in Appendix F, available in the online
supplemental material.

Theorem 4.5 shows that when the difference in utiliza-
tion between the optimal and non-optimal protocol pairs is
small compared to the difference in dominant throughputs
(Assumption 1), our modification of Algorithm 1 converges
to the optimal protocol selection when only two flows are
present. This condition is consistent with measurements of
the average throughput achieved by different TCP variants
provided in Table 3 of [36].

5 EXPERIMENTAL VALIDATION

In this section, we validate our theoretical results. We first
compare our algorithms’ performance to the offline opti-
mum and heuristics in synthetic simulations (Section 5.1)
and then use protocol performance traces from an ns-
3 [37] emulation, as well as conducting experiments on an
Amazon EC2 testbed and a university testbed (Section 5.2).

We focus on transport-layer protocols, e.g., UDP and
multiple TCP variants, as the protocol choices in our experi-
ments; but protocols on other layers of the network or other
types of network policies can also be tested in each set of
our experimental scenarios.

5.1 Numerical Performance
We evaluate Algorithm 1 in three settings: (1) per-flow pro-
tocol selection on a line network (validating Section 4’s per-
formance guarantees), (2) per-flow selection when flows
take different paths, and (3) per-link selection with
Section 3.3’s proposed modification to Algorithm 1.
Simulation set-up. We consider the three network topolo-
gies shown in Fig. 2 with three protocol choices on each
link. The bandwidth capacities and weight parameters are
drawn from uniform distributions. The expected bandwidth
capacities are drawn from the range [8,16] (Mbps) in each
timeslot. On each link, we set the weights as E[w;,] = §,3,3
for each distinct protocol. The default variance of the band-
width capacity and weights is 1/3 and 1/12. We simulate
500 flows arriving at the network according to a Poisson
Process with an arrival rate of 0.8 and record the total
accrued completion time as flows depart. By default, each
flow takes a randomly chosen path in the network with size
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o—>Q - o—>0 links
L Ii;\ks ( L - 4) links on backhaul
(a) Line network. (b) Crab network. (c) Star network.
Fig. 2. Network topologies used in our synthetic simulations.
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(a) Regret increases as the number of
protocols M increases.

Number of flows

(b) Regret remains stable as the weight
vectors w;; vary more.

Number of flows

(c) Regret remains stable as the number
of links |£| varies.

Fig. 3. The regret of OPSBC on a single-path-network is logarithmic with the number of flows.

chosen uniformly within [20,60] (Mb). In this section, L is
interchangeable with |£|. We report the averaged results of
100 repetitions of each simulation.

Per-flow Algorithm Regret on a Line Network. We first con-
sider the regret for a line network (Fig. 2(a)), defined as the
average difference of the delay cost between our algorithm
and the offline optimum. On a single path network as in this
line network example, the offline optimum always assigns
the protocol with the highest-in-hindsight bandwidth parti-
tion weight on the link to the flow with the shortest remain-
ing time, and assigns the protocol with the lowest-in-
hindsight weight to other alive flows.

Figure 3 indicates that the regret of Algorithm 1 is sublin-
ear with the number of flows and of logarithmic order, as in
Theorem 4.1. In Fig. 3(a), a larger number of protocol
choices leads to a higher regret, which is consistent with our
theoretical analysis. Furthermore, Alg. 1 converges at a
slower rate toward the optimum with more protocol
choices, which require more exploration before learning the
optimal protocol pair. Fig. 3(b) shows that the variance of
the weight vector has only mild effects on our algorithm
performance. In Fig. 3(c), we observe that the number of

100
—OPSBC
801 |—HomoPs
Rand-Greedy
@ 60[ |—-FixedPS
(=]
@
o 40
20
O,
0 100 200 300 400 500

Number of flows

Fig. 4. Significantly lower regret of OPSBC than heuristics.

links affects the average regret non-monotonically. We
hypothesize that this occurs because the completion time of
each flow is determined by the delay on the bottleneck link.
Therefore, an increased number of extra links can either
increase or decrease the completion time depending on if
they introduce a new network bottleneck.

Per-flow Selection on Various Networks. To further evaluate
Alg. 1, we design different heuristics for various network
topologies. HomoPS always chooses the same protocol for
all the alive flows on each link, which corresponds to using
the same default protocol for all flows. Therefore, in expec-
tation, flows will get an equal proportion of the bandwidth
capacity on each link. In each time slot, Rand-Greedy ran-
domly chooses a protocol pair for each link and adopts the
same greedy protocol assignment strategy as Algorithm 1,
assigning the “best” protocol to the shortest alive flow and
the other protocol to all other flows. FixedPS randomly
chooses a protocol on all links for each flow to use through
their entire lifetimes.

Figure 4 compares the average regret of OPSBC (Algo-
rithm 1) to that of our three heuristics on a line network. In
contrast to the fast convergence of our Algorithm 1, the heu-
ristics” regrets increase almost linearly, indicating an inabil-
ity to adapt to the network dynamics. More specifically, the
performance of FixedPS, a predetermined protocol selection
strategy, is similar to that of HomoPS, a completely fair
strategy. This probably occurs because FixedPS has equal
probabilities to choose each protocol for each flow on the
bottleneck link, which may converge to a fair strategy in
expectation over time. The regret of Rand-Greedy increases
at a lower rate, demonstrating the good performance of our
greedy strategy in assigning protocols.

For the crab and star networks, we compare another heu-
ristic, Random, which randomly chooses a protocol for each
flow on each link, with OPSBC and HomoPS. Table 3
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(a) Topology used in our ns-3 simula-
tion.

Fig. 5. Network topologies used in our emulation and testbed experiments.

shows that Random out-performs HomoPS, the fair strat-
egy; and these heuristics have at least a 24% and 45% larger
total completion time than our algorithm OPSBC for 500
flows on the two networks, respectively. These results
imply that per-flow protocol selection can lower completion
times compared to using the same protocol for all flows,
especially when we learn the protocol performance on het-
erogeneous links as done by OPSBC.

For per-link protocol selection, we implement an extra
benchmark by using a reinforcement learning algorithm,
A2C, with a pre-trained model. More specifically, we con-
sider the same line network used for Fig. 3 and develop an
environment where the network characteristics on each link
independently evolve as a Markov Process, consisting of 20
distinct values of bandwidth capacities as states and a dis-
tribution of reward representing the total transmission rate
that is dependent with protocol and bandwidth capacity.
Since A2C allows different protocols to be chosen for differ-
ent network states, we would expect it to outperform our
OPSBC model, which simply aims to optimize over the
expected state. Fig. 6 shows that our algorithm OPSBC
achieves a 16% to 50% flow completion time improvement
over heuristics Random, FixedPS and an advanced rein-
forcement learning algorithm A2C without using a pre-
trained model (A2C-without-training). Meanwhile, it
shows that using offline training can indeed learn the opti-
mal protocols faster (A2C + offline training with 10* time-
steps of pre-training achieves a smaller completion time in
the initial rounds), but our model-free Algorithm 1 with
adaptation based on (9) can catch up with A2C + offline
training quickly and achieves comparable (1% difference)
completion time, even without the offline training that
A2C + offline training requires. Therefore, our algorithm
can benefit scenarios where collecting extensive offline
data traces is impractical, e.g., if it is difficult to simulate
realistic network conditions.

[e]

B OPSBC (per-link)
ENA2C + offline training
[EA2C-without-training
[CIRandom
[CIFixedPS

o

IS

Toal flow completion time
n

o

4
Number of flows (x 10%)

5 6 7

Fig. 6. OPSBC achieves similar flow-time (ms) to that of A2C with off-
line training for per-link selection on a line network.

(b) Amazon EC2 testbed topology.

(0) AR testbed topology.

5.2 Experimental Results

We finally demonstrate that our Algorithm 1 (OPSBC) is
feasible for transport protocol selection in real network set-
tings. We first test the algorithm on performance data from
ns-3 [37] TCP simulations and then demonstrate its effi-
cacy in experiments on Amazon EC2.

Experiments with Emulation Data. Fig. 5(a) shows the setup
of our ns-3 [37] simulator. We assume that 20 mobile nodes
each receive data from a dedicated server over an LTE net-
work with a crab topology shown in Fig. 5(a); the server-
PGW links each have 100 Mbps capacity while the PGW-BS
link has 20 Mbps capacity, making it the network bottleneck.
Each node can use one of five transport protocols: UDP, TCP
CUBIC, TCP NewReno, TCP Vegas, or TCP Westwood.
Nodes running UDP saturate their flows at 1 Mbps. We run
20 flows for each protocol pair in 30 different scenarios (e.g.,
with randomly varying mobility of the mobile nodes) and
measure their throughput and delay on each link, using these
data traces to drive our algorithm. The flow sizes and arrival
rates are chosen from the same distributions as in Section 5.1.

Figure 7(a) compares the total flow-time of OPSBC
(Alg. 1) to that of the HomoPS and Random heuristics.
These two heuristics show a 30% larger total flow-time than
our Alg. 1 when 1000 flows are processed, which is
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Fig. 7. OPSBC achieves lower flow-time with a lower standard deviation
onns-3 data traces.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on August 21,2023 at 06:27:14 UTC from IEEE Xplore. Restrictions apply.



ZHANG ETAL.: OPTIMAL NETWORK PROTOCOL SELECTION FOR COMPETING FLOWS VIA ONLINE LEARNING

5 x10° ‘
EOPSBC (non-identical utilization)

aé Bl Per-link-random
=15 [ Per-flow-random |
& 7 |[EECubic-only
@ [CIReno-only
g 4 [CWestwood-only 1
8 [IVegas-only
2
o
=05F d
<
o
; I||| 1] I

o L mmmfllamn

10 20 30 40 50

Number of flows

Fig. 8. OPSBC for non-identical utilization achieves lower flow-time (ms)
than heuristics in EC2 experiments on Fig. 5(b)’s testbed.

consistent with their 24.6% increase in completion times for
the crab topology with synthetic data (Table 3). We note
that we have 5 protocol choices in our testbed emulation,
instead of the 3 choices used for Table 3’s results. Thus, we
would expect to observe higher regret and less improve-
ment over the heuristic (cf. Fig. 3(a)) due to having more
protocol choices. We also find the standard deviation of the
total flow-time (o(-)) of OPSBC, HomoPS and Random.
Fig. 7(b) shows that OPSBC has the smallest standard devi-
ations, indicating it consistently performs well over the ran-
domly repeated experiments.

EC2 Experiments. We implement a single-source-destina-
tion network with four nodes, each equipped with a TCP
proxy, deployed on four Amazon EC2 VM instances with
50 Mbps capacity on each link (Fig. 5(b)). We generate 50
flows with sizes uniformly drawn from [10,3 x 10%] (Mb)
arriving in five batches spaced 3 seconds apart. On each
link, OPSBC can choose TCP CUBIC, Vegas, Reno, or West-
wood. Fig. 8 shows the resulting completion times. Despite
the overhead at the node proxies, OPSBC achieves a
37.95%, 42.86%, and > 16% decrease in flow-time, com-
pared to randomly selecting any single protocol for all flows
to use on each link (Per-link-random), randomly selecting a
protocol for each flow on each link (Per-flow-random), and
simply using a single variant of TCP for all flows (XX-only),
respectively. Note that in realistic scenarios, one cannot
accurately predict which single protocol is the optimum in
the future or expect that using one protocol solely (e.g.,
Vegas-only) will always perform the best in a changing
environment. Therefore, our dynamic strategy provides the
most flexible way to select the optimal protocol for the cur-
rent time and adapt over time.

AR Experiments. We finally implement a two-source-and-
one-destination network in the computing cluster at Duke
University. Fig. 5(c) shows the network topology, with two
Pixel 3 XL cellphones that are connected to a WiFi access
point (WAP) and running Augmented Reality (AR) applica-
tions. They receive holograms through the same path from
an edge sever 10 hops away in the Duke Computing Cluster.
We generate 16 hologram transmissions for each cellphone,
and we uniformly at random sample the size of each holo-
gram from [0, 256] (MB) and the time interval between the
end time of each transmission and the start time of the previ-
ous transmission from [0, 15] (s). We allow OPSBC to choose
TCP Veno, Reno, Vegas, Cubic, and Bottleneck Bandwidth
and Round-trip propagation time (BBR) [38] for each trans-
mission between a source to the destination. Fig. 9 shows
that OPSBC achieves at least a 26% decrease in flow-time,
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Fig. 9. OPSBC for non-identical utilization achieves lower flow-time (u.s)
than heuristics in AR hologram transmission experiments on Fig. 5(c)’s
testbed.

compared to 7 benchmarks: XX-only always uses protocol
XX for all flows, Per-link-random randomly chooses a single
protocol for all flows to use, and Per-flow-random randomly
chooses a protocol for each alive flow.

6 RELATED WORK

Machine learning for protocol selection. In recent years,
machine learning has been adopted to design TCP and
resource allocation algorithms in network settings. Winstein
et al. [39] design Remy, a program that can generate distrib-
uted congestion control algorithms in a multi-user network
and achieve desired outcomes, e.g., high throughput. In
light of this offline learning application, we believe that
online learning of the protocol performance as in this work
can further facilitate protocol selection in dynamic network
environments. A new adaptable congestion control algo-
rithm, called Verus [21], can dynamically adjust the conges-
tion window size by continuously learning the short-term
packet delay variations. Mao et al. [40] use reinforcement
learning to allocate cloud resources in an online setting for
minimizing job slow-downs. In contrast, we provide theoret-
ical guarantees of our online algorithms’ solution optimal-
ity, and numerically show that we achieve comparable
performance to algorithms with offline training.

Online Learning for Network Management. Online learning
algorithms can make decisions in network settings when
data gradually become available over time. Chen ef al. [41]
design novel algorithms for online convex optimization
problems with switching costs. Zhang et al. [42] integrate
the online gradient descent method into online cloud
resource provisioning with theoretical guarantees. How-
ever, these studies assume full feedback on all feasible solu-
tions, which is unavailable in our model. Thus, we instead
take an MAB approach, which only uses information from
the chosen decisions, leading to the famous exploration-and-
exploitation trade-off. Combes et al. [43] propose MAB algo-
rithms for ad-display optimization, considering users with
fixed budgets. In [44], MAB algorithms have been extended
for dynamic channel access. Unlike the algorithm design in
these works, we do not directly optimize the rewards of all
possible solution vectors, but instead select a subset of solu-
tions driven by the analysis of the offline optimum and use the
rewards as predicted inputs needed by an additional strategy to
optimize the protocols. A few other works design MAB-based
algorithms for optimizing transport or network layer proto-
cols, but have different focus and theoretical challenges
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from ours. For instance, [45] maximizes the multi-path send-
ing rates at a home network with interference domains con-
sidered for each link. Their optimization problem has a
complex structure, which is proven to be NP-hard in the off-
line setting, due to the network topology and interference
across links, and their MAB algorithm needs to deal with
costly probing for the rewards. But our challenge is orthogo-
nal — our decisions are coupled together across times due to
the complex form of the flow completion time function. [46]
proposes three insightful myopic congestion control policies
for end-to-end protocol design in wireless mesh network
based on the restless MAB framework. Their objective func-
tion is written as the sum of terms, each of which only
depends on the decision in a single timeslot, while ours is
allowed to be an unknown and non-linear function of deci-
sions across timeslots, and we validate our method using both
theoretical regret analysis and testbed experiments. In [47],
MAB model is established for making the decisions on chan-
nel selection in a wireless local area network, incorporating
chaotically oscillating time series generated by semiconductor
lasers. They leverage the specific problem structure in ultra-
fast photonic systems to design the MAB framework for
throughput maximization and focus on the operation viability
tested through experiments. We focus on a different set of net-
work scenarios where the resources are divided by different
application flows in a unknown manner and the objective
function is non-linear with rewards over different time points.

Reinforcement learning (RL) has been adopted recently
to optimize network policies in wireless (e.g., 5 G) networks,
such as TCP sending rates [48] or congestion windows [49],
network slice configuration [50], [51], [52], MAC-layer
resource allocation [53], [54], caching [55], offloading deci-
sions [56], power management [57], and revenue maximiza-
tion [58]. These works adopt state-of-the-art deep RL
algorithms, which require a large and uncertain amount of
time to train the neural network models, while our model-
free approach is easier to implement, has much smaller
algorithm running time, and can achieve comparable per-
formance as shown in Section 5. Our MAB framework can
moreover provide theoretical optimality guarantees, unlike
most deep RL approaches. By leveraging existing protocols
rather than using RL methods to design new ones as in [39],
[52], [54], we further introduce less risk that the learned pro-
tocol will behave unexpectedly in practice, as most existing
protocols can be expected not to cause catastrophic failures.
New protocols designed by RL methods, on the other hand,
may not have such assurances.

Protocol Performance Models. A large variety of TCP [31],
[59] and MAC [14], [32] variants have been proposed to
improve flow throughput while controlling congestion. Exten-
sive experiments, for instance, have compared the performance
of TCP variants, e.g., TCP Cubic, TCP NewReno, etc. [29], [59],
showing that these TCP variants have different performance
on various types of network links. However, there are few ana-
lytical models for how these protocols interact with each other
when they coexist in the network. NUM frameworks provide
insight into protocol interactions at various layers of the stack
when the per-flow resource allocation preferences are
expressed with utility functions [13], [29], [30]. However, such
utility functions only cover a few TCP variants and cannot
adapt to changing network conditions.
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7 DiscussIiON AND CONCLUSION

To cope with network flows’ increasingly heterogeneous
requirements and changing network characteristics, we pro-
pose a dynamic network management framework that lever-
ages existing network protocols. We use model-free online
learning to support automatic protocol selection for each indi-
vidual flow, so as to optimize the overall flow completion
time. Motivated by the deficiency of existing models for flow
performance under different protocol choices, we propose a
model to characterize coexisting flows’ transmission rates
under different protocols. We then extend multi-armed bandit
algorithms to learn the rate function and predict an optimal
assignment of protocols to flows at each time. Taking these
real-time predictions as input, we then propose a provably
optimal online protocol selection scheme that can minimize
the aggregate flow completion time. The asymptotic optimal-
ity of our learning and assignment algorithm is validated
through theoretical analysis and experiments. Substantial
work, however, remains. On the theoretical side, additional
efforts will be required to explore the lower-bound of the
regret and adapt our mechanisms to independent decisions at
different flow sources. On the practical side, testbed experi-
ments for a larger scale network considering cross-layer proto-
col interactions, e.g., routing choices, should be carried out.
Our work thus represents an initial step towards optimal
online protocol selection for automated network management.
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