
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 1, FEBRUARY 2022 215

Machine Learning on Volatile Instances:
Convergence, Runtime, and Cost Tradeoffs

Xiaoxi Zhang , Member, IEEE, Jianyu Wang , Student Member, IEEE, Li-Feng Lee, Tom Yang, Akansha Kalra,

Gauri Joshi , Member, IEEE, and Carlee Joe-Wong , Member, IEEE

Abstract— Due to the massive size of the neural network
models and training datasets used in machine learning today,
it is imperative to distribute stochastic gradient descent (SGD)
by splitting up tasks such as gradient evaluation across multiple
worker nodes. However, running distributed SGD can be pro-
hibitively expensive because it may require specialized computing
resources such as GPUs for extended periods of time. We propose
cost-effective strategies to exploit volatile cloud instances that
are cheaper than standard instances, but may be interrupted
by higher priority workloads. To the best of our knowledge,
this work is the first to quantify how variations in the number
of active worker nodes (as a result of preemption) affect SGD
convergence and the time to train the model. By understanding
these trade-offs between preemption probability of the instances,
accuracy, and training time, we are able to derive practical strate-
gies for configuring distributed SGD jobs on volatile instances
such as Amazon EC2 spot instances and other preemptible cloud
instances. Experimental results show that our strategies achieve
good training performance at substantially lower cost.

Index Terms— Machine learning, stochastic gradient descent,
volatile cloud instances, bidding strategies.

I. INTRODUCTION

STOCHASTIC gradient descent (SGD) is the core algo-
rithm used by most state-of-the-art machine learning (ML)

problems today [3]–[5]. Yet as ever more complex models are
trained on ever larger amounts of data, most SGD implemen-
tations have been forced to distribute the task of computing
gradients across multiple “worker” nodes, thus reducing the
computational burden on any single node while speeding up
the model training through parallelization. Currently, even
distributed training jobs require high-performance computing
infrastructure such as GPUs to finish in a reasonable amount
of time. However, purchasing GPUs outright is expensive

Manuscript received June 25, 2020; revised May 22, 2021; accepted
August 11, 2021; approved by IEEE/ACM TRANSACTIONS ON NETWORK-
ING Editor J. Shin. Date of publication November 10, 2021; date of current
version February 17, 2022. This work was supported in part by NSF
under Grant CNS-1751075, Grant CNS-1909306, and Grant CCF-1850029;
in part by the 2018 IBM Faculty Research Award; and in part by the
Qualcomm Innovation Fellowship. A conference version of this paper appears
at IEEE Conference on Computer Communications 2020 [DOI: 10.1109/
INFOCOM41043.2020.9155448]. This is an extended version with new results
especially on multiple variants of the SGD algorithm. Detailed proofs can be
found in our technical report [2]. (Corresponding author: Xiaoxi Zhang.)

Xiaoxi Zhang is with the School of Computer Science and Engineering,
Sun Yat-sen University, Guangzhou, Guangdong 510275, China (e-mail:
zhangxx89@mail.sysu.edu.cn).

Jianyu Wang, Li-Feng Lee, Tom Yang, Akansha Kalra, Gauri Joshi, and
Carlee Joe-Wong are with the Department of Electrical and Computer
Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA
(e-mail: jianyuw1@andrew.cmu.edu; gavin.lee@sv.cmu.edu; tom.yang@
sv.cmu.edu; akanshak@andrew.cmu.edu; gaurij@andrew.cmu.edu;
cjoewong@andrew.cmu.edu).

Digital Object Identifier 10.1109/TNET.2021.3112082

and requires intensive setup and maintenance. Renting such
machines as on-demand instances from services like Amazon
EC2 can reduce setup costs, but may still be prohibitively
expensive since distributed training jobs can take hours or even
days to complete.

A common way to save money on cloud instances is
to utilize volatile, or transient, instances, which have lower
prices but experience interruptions [6]–[8]. Examples of
such instances include Google Cloud Platform’s preemptible
instances [7] and Azure’s low-priority virtual machines [8];
both give users access to virtual machines that can be pre-
empted at any time, but charge a significantly lower hourly
price than on-demand instances with availability guarantees.
Amazon EC2’s spot instances offer a similar service, but
provide users additional flexibility by dynamically changing
the price charged for using spot instances. Users can then
specify the maximum price they are willing to pay, and
they do not receive access to the instance when the prevail-
ing spot price exceeds their specified maximum price [9].
Volatile computing resources may also be used to train ML
jobs outside of traditional cloud contexts, e.g., in datacenters
that run on “stranded power.” Such datacenters only acti-
vate instances when the energy network supplying power to
the datacenter has excess energy that needs to be burned
off [10], [11], leading to substantial temporal volatility in
resource availability. SGD variants are also commonly used
to train machine learning models in edge or fog computing
contexts, where resource volatility is a significant practical
challenge [12]–[14].

SGD algorithms can be run on volatile instances by
deploying each worker on a single instance, and deploying
a parameter server on an on-demand or reserved instance
that is never interrupted [15]. This deployment strategy,
however, has drawbacks: since the workers may be inter-
rupted throughout the training process, they cannot update the
model parameters as frequently, increasing the error of the
trained model compared to deploying workers on on-demand
instances. Compensating for this increased error would require
either training the model for a larger number of iterations
or increasing the number of provisioned workers, both of
which will increase the training cost. In this paper, we quantify
the performance trade-offs between error, cost, and training
time for volatile instances. We then use our analysis to
propose practical strategies for optimizing these trade-offs in
realistic preemption environments. We first consider Amazon
spot instances, for which users can indirectly control their
preemptions by setting maximum bids, and derive the resulting
optimal bidding strategies. We then derive the optimal number
of iterations and workers when users cannot control their
instances’ preemptions, as in GCP’s preemptible instances and

1558-2566 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 21,2022 at 14:27:38 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0751-2773
https://orcid.org/0000-0002-7075-9333
https://orcid.org/0000-0002-6372-9697
https://orcid.org/0000-0003-0785-9291

216 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 1, FEBRUARY 2022

Azure’s low-priority VMs. More specifically, this work makes
the following contributions:

1) Quantifying training error convergence with dynamic
numbers of workers (Section III). Using volatile
instances that can be interrupted and may rejoin later
presents a new research challenge: prior analyses of dis-
tributed SGD algorithms do not consider the possibility
that the number of active workers will change over time.
We derive new error bounds on the convergence of SGD
methods when the number of workers varies over time
and show that the bound is proportional to the expected
reciprocal of the number of active workers.

2) Deriving optimal spot bidding strategies (Section IV). To
the best of our knowledge, no works have yet explored
bidding strategies for distributed machine learning jobs
that consider the bidding’s effect on error convergence
and random iteration runtimes. We analyze a unique
three-way trade-off between the cost, error, and train-
ing time, using which we can design optimal bidding
strategies to control the preemptions of spot instances.
For tractability, we focus on two scenarios where each
worker submits the same bid, or one of two distinct bids,
and then extend to more general bid types in special
cases.

3) Deriving the optimal number of workers (Section V).
For scenarios where users cannot control the preemp-
tion probability, we propose a general model to relate
the number of provisioned workers to the expected
reciprocal of the number of active workers, which can
capture practical preemption distributions. Using this
model, we then provide mathematical expressions to
jointly optimize the number of provisioned workers and
iterations. We also propose a strategy to dynamically
adjust the number of provisioned workers, which can
further improve the error convergence.

4) Experimental validation on Amazon EC2 (Section VI).
We validate our results by running distributed SGD jobs
analyzing the CIFAR-10 [16] dataset on Amazon EC2.
We show that our derived optimal bid prices can reduce
users’ cost by 65% on real, and 62% on synthetic,
spot price traces while meeting the same error and
completion time requirements, compared with bidding
a high price to minimize interruptions as suggested
in [17]. Moreover, we implement our proposed dynamic
strategy with an increasing number of workers over time
and validate that it can reduce the cost and yield a
better cost/completion time/error trade-off by: (i) adding
workers later in the job and re-optimizing the bids
according to the realized error and training time so far
on Amazon spot instances [6], and (ii) exponentially
increasing the number of provisioned workers and run-
ning for a logarithmic number of iterations on GCP
preemptible instances [18].

II. RELATED WORK

Our work is broadly related to prior works on convergence
analysis for distributed machine learning, as well as exploiting
spot instances to efficiently run computational jobs.

Distributed machine learning generally assumes that mul-
tiple workers send local computation results to be aggregated
at a central server, which then sends them updated parameter
values. The SGD algorithm [3], in which workers compute

the gradients of a given objective function with respect to
model parameters, is particularly popular. In SGD, workers
individually compute the gradient over stochastic samples
(usually a mini-batch [19]) chosen from data residing at each
worker in each iteration. Recent work has attempted to limit
device-server communication to reduce the training time of
SGD and related models [12], [20]–[22], while others analyze
the effect of the mini-batch size [19] or learning rate [23],
[24] on SGD algorithms’ training error. Bottou et al. [24]
analyze the convergence of training error in SGD but do not
consider the runtime per iteration. Dutta et al. [23] analyze
the trade-off between the training error and the (wall-clock)
training time of distributed SGD, accounting for stochastic
runtimes for the gradient computations at different work-
ers [25]. Our work is similar in spirit but focuses on volatile
instances, introducing cost as another performance metric.
We also go beyond [23], [24] to derive error bounds when
the number of active workers changes in different iterations.

Utilizing spot and other transient cloud resources
for computing jobs has been extensively studied.
Zheng et al. [15] design optimal bids to minimize the
cost of completing jobs with a pre-determined execution
time and no deadline. Other works derive cost-aware bidding
strategies that consider jobs’ deadline constraints [26] or
jointly optimize the use of spot and on-demand instances [27].
However, these frameworks cannot handle distributed SGD’s
dependencies between workers. Another line of work
instead optimizes the markets in which users bid for spot
instances. Sharma et al. [17] advocate bidding the price of an
on-demand instance and migrating to VM instances in other
spot markets upon interruptions. The resulting migration
overhead, however, requires complex checkpointing and
migration strategies due to SGD’s substantial communication
dependencies between workers, realizing limited savings [28].
Some software frameworks have been designed for running
big data analytics on transient instances [29], but they do not
include theoretical ML performance analyses.

III. ERROR AND RUNTIME ANALYSIS OF DISTRIBUTED

SGD WITH VOLATILE WORKERS

The number of active computing nodes used for distrib-
uted SGD training affects the convergence of the training
error versus the number of SGD iterations as well as the
runtime spent per iteration. Unlike most previous works in
the optimization theory literature, which focus only on error-
versus-iterations convergence, we consider both these factors
and analyze the true convergence of SGD with respect to the
wall-clock time. Moreover, to the best of our knowledge this
is the first work that presents an error and runtime analysis for
volatile computing instances, which can result in a changing
number of active workers during training.

We formally introduce distributed SGD in Section III-A.
In Section III-B, we quantify how worker volatility adversely
affects error convergence because having fewer active workers
yields more noisy gradients. In Section III-C, we analyze the
effect of worker volatility on the training runtime, which is
affected in two opposing ways. A higher preemption proba-
bility results in longer “dead” time intervals with zero active
workers. Although a lower preemption probability yields more
active workers, it can increase synchronization delays in
waiting for straggling nodes. This error and runtime analysis
lays the foundation for subsequent results on bidding strategies

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 21,2022 at 14:27:38 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: MACHINE LEARNING ON VOLATILE INSTANCES: CONVERGENCE, RUNTIME, AND COST TRADEOFFS 217

that can dynamically control the availability of each individual
worker node and the number of active worker nodes.

In Sections IV and V, we use our results on the error and
runtime analysis from this section to minimize the cost of
training a job, subject to constraints on the maximum allow-
able error and runtime. Our goal is to solve the optimization:

minimize : Expected total cost E[C] (1)

st.: Expected training error E[φ] ≤ �, (2)

Expected completion time E[τ] ≤ θ, (3)

where � and θ denote the maximum allowed error and the
(wall-clock) job completion time respectively.

A. Distributed SGD Primer

Most state-of-the-art machine learning systems employ Sto-
chastic Gradient Descent (SGD) to train a neural network
model so as to minimize the empirical risk function G : R

d →
R over a training dataset S, which is defined as

G(w) � 1
|S|

|S|∑
s=1

l(h(xs,w), ys), (4)

where the vector w denotes the model parameters (for exam-
ple, the weights and biases of a neural network model), and the
loss l(h(xs,w), ys) compares our model’s prediction h(xs,w)
to the true output ys, for each sample (xs, ys).

The mini-batch SGD algorithm iteratively minimizes G(w)
by computing gradients of l over a small, randomly chosen
subset of data samples Sj in each iteration j and updat-
ing w as per the update rule wj+1 = wj − αjg(wj).
Here αj is the (pre-specified) step size and g(wj) =∑

s∈Sj
∇l(h(xs,wj), ys)/|Sj |, the gradient computed using

samples in the mini-batch Sj .
Synchronous Distributed SGD. To further speed up the

training, many practical implementations parallelize gradient
computation by using the parameter server framework shown
in Fig. 2 [23]. In this framework, there is a central parameter
server and n worker nodes. Each worker has access to a subset
of the data, and in each iteration each worker fetches the
current parameters wj from the parameter server, computes
the gradients of l(h(xs,wj), ys) over one mini-batch of its
data, and pushes them to the parameter server. For fully-
synchronous SGD as we elaborate below, the parameter server
waits for gradients from all n workers before updating the
parameters to wj+1 as per

wj+1 = wj − αj

n

n∑
i=1

g(i)(wj), (5)

where g(i)(wj) is the mini-batch gradient returned by the
ith worker. The updated wj+1 is then sent to all workers,
and the process repeats. This gradient aggregation method is
commonly referred to as synchronous SGD. Asynchronous
gradient aggregation can reduce the delays in waiting for strag-
gling workers, but causes staleness in the gradients returned
by workers, which can give inferior SGD convergence [23].

Based on the gradient aggregation method used by the
server, we consider three variants of synchronous SGD,
as shown in Figure 1.

1. Fully-synchronous SGD: In each iteration j, the para-
meter server waits for all workers to finish processing their

Fig. 1. Gradient computations on three workers for two iterations in fully,
N = 2-, and N = 2-batch synchronous SGD. The x-axis indicates time, and
lighter colored arrows indicate workers cancelled by the Parameter Server
(PS).

Fig. 2. Parameter Server Model and an illustration of how error and cost vary
versus training time when the number of workers varies with time. Having
more active workers results in a faster decrease in error, but a faster increase
in cost.

mini-batches and push the computed gradients, before updat-
ing the parameters wj+1 to all workers for the next iteration.

2. N -synchronous SGD: In fully synchronous SGD, wait-
ing for the slowest worker to finish its gradient computation
can bottleneck an iteration’s completion time. To overcome
this bottleneck, in N -synchronous SGD the parameter server
waits for the first N out of n workers to push their computed
gradients. It updates the parameters to wj+1 according to these
N gradients, and pushes wj+1 to all workers, canceling the
outstanding gradient computations at slow workers.

3. N -batch-synchronous SGD: To further reduce syn-
chronization delays, upon finishing a gradient computation,
each worker continues to process another mini-batch using
the same parameters wj until N mini-batches are finished
collectively by the workers. In contrast to N -synchronous
SGD, the parameter server waits for the first N mini-batches to
be finished rather than the first N workers. Once the parameter
server receives N gradient updates, it cancels the remaining
gradient computations, and updates w at all workers.

Distributed SGD on Volatile Workers. In this work we
consider that the parameter server is run on an on-demand
instance, while the n workers are run on volatile instances that
can be interrupted or preempted during the training process,
as illustrated in Fig. 2. Let yj denote the number of active (i.e.,
not preempted) workers in iteration j, such that 0 < yj ≤ n for
all j = 1, . . . , J , where J is the total number of iterations. The
sequence y1, y2, . . . yJ can be considered as a random process.
We do not count “iterations” where the number of active
workers is 0, as there is then no gradient update. However,
having zero workers will increase the total training completion
time, which we will account for in Section III-C.

B. SGD Error Convergence With Variable Number of
Workers

Since the number of active workers may vary over time,
the number of gradient contributions used to update the para-
meters can be variable for the fully-synchronous SGD, while

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 21,2022 at 14:27:38 UTC from IEEE Xplore. Restrictions apply.

218 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 1, FEBRUARY 2022

there are always a total of N gradient computes aggregated
per iteration in a N -synchronous and N -batch-synchronous
SGD. This fact leads to a more complex analysis of the
error convergence for fully-synchronous SGD with dynamic
workers. In the following, we first give an upper-bound on
the expected training error in terms of yj , j = 1, . . . J for
fully-synchronous SGD (see Theorem 1); the error bounds
for N -synchronous and N -batch-synchronous SGD directly
follow. For error convergence analysis we make the following
assumptions on the objective function G, which are common
in most prior works on SGD convergence analysis [23], [24].

Assumption 1 (Lipschitz-Smoothness): The objective func-
tion G(w) : R

d → R is L-Lipschitz smooth, i.e., it is
continuously differentiable and there exists L > 0 such that

� ∇G(w) −∇G(w�) �2≤ L � w − w� �2, ∀w,w� ∈ R
d

(6)

Assumption 2 (First and Second Moments): Let
ESj [∇G(wj ,Sj)] and G(w) represent the expected gradient
at iteration j for a mini-batch Sj of the training data and
the gradient for the full data, respectively. Then there exist
scalars μG ≥ μ > 0 such that

∇G(wj)T
ESj [∇G(wj ,Sj)] ≥ μ � ∇G(wj) �2

2 (7)

and � ESj [∇G(wj ,Sj)] �2 ≤ μG � ∇G(wj) �2 (8)

and scalars M, MV ≥ 0 with MG = MV + μ2
G such that

ESj

[� ∇G(wj ,Sj) �2
2

] ≤ M + MG � ∇G(wj) �2
2 . (9)

for any given size of mini-batch Sj on one worker.
Theorem 1 (Error Bound With Dynamic Active Workers):

Suppose that the objective function G(·) satisfies Assump-
tions 1– 2 and is c-strongly convex [30] with parameter c ≤ L.
Assuming G∗ ≥ 0, for a fixed step size 0 < α < μ

LMG
and

given w1, the expected training error, defined as the expected
gap between the objective value of running a fully-synchronous
SGD after J iterations and the optimum G∗, is:

E [G(wJ+1) − G∗] ≤ (1 − αcμ)J
E [G(w1)]

+
α2LM

2

J∑
j=1

(1 − αcμ)J−j
E

[
1
yj

]
; (10)

Taking E

[
1
yj

]
= 1

N in (10) gives the error bound for an
N -synchronous SGD and N -batch-synchronous SGD.

The proof is given in the Appendix of our technical
report [2], where we also extend Theorem 1 to handle
non-convex objective functions and a diminishing step size,
by analyzing the convergence speed to a stationary point
instead of the error defined as E [G(wJ+1) − G∗].

Discussion of the Assumptions. Assumption 1 and the
c-strongly convexity assume a lower bound and an upper
bound of G(y) at any point y respectively, meaning G(·)
is a function that does not change its value too fast or too
slowly, as these two assumptions lead to: G(x) + ∇G(x)
(y − x) + c/2||x − y||22 <= G(y) <= G(x) + ∇G(x)
(y − x) + L/2||x − y||22, with 0 < c ≤ L and any given
two points x, y in the feasible region of G(·). Assumption 2
first states in (7) and (8) that, in expectation, the vector
−∇G(wj ,Sj) is a direction of sufficient descent for G(·) from
wj with a norm comparable to the norm of the gradient. In par-
ticular, a special case μG = μ = 1 means tha ∇G(wj ,Sj)
is an unbiased estimate of the full gradient ∇G(wj). It then

assumes in (9) that the variance of ∇G(wj ,Sj) is restricted,
but is allowed to increase linearly with the squared norm of
the full gradient.

Our Theorems 1 and 2 also assume i.i.d. workers’
mini-batches. It generally holds when each worker’s mini-
batches are i.i.d. drawn from a portion of data partitioned
from the original dataset uniformly at random, but might not
hold if each portion is large and fixed during the training. One
method to address this is to establish a shared “data lake” from
which workers draw their mini-batches in an i.i.d. manner
in each epoch, which would reduce the storage gains from
parallelizing the data storage across multiple workers though.
We leave the implementation of the data distribution to ensure
this i.i.d. assumption into our future work.

Remark 1 (Penalty for Using Volatile Instances): The error
bound in Theorem 1 given the expected number of active
workers E [yj] is minimized when yj is not a random variable,
i.e., SGD is run on on-demand instead of volatile instances.
This result follows from the convexity of y−1

j ; using Jensen’s
inequality we can show that fixing the number of active
workers to y = E [yj] minimizes E

[
y−1

j

]
.

Remark 2 (Error and Preemption Probability): Suppose that
a worker is preempted with probability q in each iteration.
Then the bound in Theorem 1 increases with q because
E[1/yj] increases with q. Thus, more frequent preemption or
interruption of workers yields worse error convergence.

Dynamic Numbers of Provisioned Workers for Fully-
Synchronous SGD. While Theorem 1 gives us the error
bound for a fixed number (n) of provisioned workers over
iterations, ML practitioners often increase the number of
workers over time [31]–[33]. Intuitively, in the later training
stages, the parameter values are closer to convergence, and
thus it is crucial that the gradient updates are accurate,
i.e., averaged over a larger number of worker mini-batches.
More formally, Theorem 1 shows that E

[
1
yj

]
’s contribution to

the error bound increases exponentially with j by 1
1−αcμ . This

observation motives us to increase the number of provisioned
workers over iterations so that E

[
1
yj

]
will decrease and the

error decay is further improved. Having smaller numbers of
active workers in the early iterations (for which j 	 J)
can further reduce the incurred cost, without affecting the
error much due to the smaller contribution of E

[
1
yj

]
to the

error bound. In fact, guided by the above intuition, we have
the following improved error bound when the number of
provisioned workers exponentially increases with iterations.

Theorem 2 (Error With Increasing Provisioned Workers):
Suppose nj , the number of provisioned workers in iteration j,
satisfies nj =

⌈
n1η

j−1
⌉

for some n1 > 0, η > 1, and the

number of active workers yj satisfies E

[
1
yj

]
≤ d

nχ
j

for some

χ ≥ 0, d > 0. Then for any α ≤ μ
LMG

, the expected training
error of running fully-synchronous SGD after J iterations is:

E [G(wJ+1) − G∗] ≤ (1 − αcμ)J
E [G(w1)]

+
B

nχ
1

· (1 − αcμ)J−1 · 1 − xJ

1 − x
, (11)

where x = 1
ηχ(1−αcμ) and B = α2 LMd

2 .
Theorem 2 shows that the error bound can converge to 0

asymptotically with J if ηχ ≥ 1
1−αcμ , in contrast to con-

verging to a positive constant when using a static number of

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 21,2022 at 14:27:38 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: MACHINE LEARNING ON VOLATILE INSTANCES: CONVERGENCE, RUNTIME, AND COST TRADEOFFS 219

workers as shown in Theorem 1. It also implies that for any
given increasing rate of the number of provisioned workers
η > 1, there always exists a step size α such that the error
bound decreases in the order of 1

ηχ .
One can similarly exponentially increase the batch size of

each worker while using the same number of workers over
iterations [34], but doing so will exponentially increase the
runtime of each iteration. We prove in Corollary 1 that our
dynamic strategy achieves the same error convergence rate and
a better asymptotic error bound with a significantly smaller
number of iterations than using a static number of workers.

Corollary 1 (Reduced Iterations With Extra Workers):
Suppose the number of active workers yj satisfies E

[
1
yj

]
≤

O
(

1
nχ

j

)
for some χ ≥ 0. Then for any η > 1 and J sufficiently

large, provisioning
⌈
n1η

j−1
⌉

workers in iteration j and run-
ning fully-synchronous SGD for

⌈
logηχ (1 + (η − 1)J)

⌉
itera-

tions can achieve an error bound no larger than provisioning
n1 workers for J iterations.

Remark 3 (Bounded Number of Provisioned Workers): If
there is an upper limit of the number of provisioned workers,
denoted by nmax, then the error bound (11) will be:

E [G(wJ+1) − G∗] ≤ (1 − αcμ)J
E [G(w1)]

+ B · max
{

(1 − αcμ)J−11 − xJ

nχ
1 (1 − x)

,
1 − (1 − αcμ)J

nχ
maxαcμ

}
(12)

where x = 1
ηχ(1−αcμ) and B = α2 LMd

2 . It means that the

error will converge to αLMd
2cμnχ

max
, instead of zero. One can verify

that the asymptotic error in this case is equal to always using
nmax provisioned workers each iteration (setting E

[
1
yj

]
=

d
nχ

max
in Theorem 1), but clearly will consume much less cost

as there are much fewer workers used in the early iterations.
Note that Theorem 2 and Corollary 1 hold only for

fully-synchronous SGD, as a greater number of gradient
updates are gained from having more active workers in each
iteration, which can decrease the variance of the gradients
computed from random mini-batches. The error convergence
rates of N -synchronous and N -batch-synchronous SGDs,
in contrast, are not improved by increasing the number of
provisioned workers due to constantly processing N mini-
batches per iteration, but the runtime can be reduced which we
will discuss in Section III-C. To achieve a better convergence
by increasing the number of workers, we can simply modify
these two SGD variants to be Nj-(batch)-synchronous, with
an increasing Nj .

Remark 4 (Theorem 2 Adaptation for SGD Variants): The-
orem 2 can be applied to the N -synchronous and N -batch-
synchronous SGD variants if we set the number of provisioned
workers as required by Theorem 2 and modify N , the number
of mini-batches to finish in iteration, so that it exponentially
increases with the number of iterations, e.g., Nj = n̄η̄j−1

where 1 ≤ n̄ ≤ n1, 1 < η̄ ≤ η. Similar to (11), the expected
training error after J iterations is at most

(1 − αcμ)J
E [G(w1)] +

B

n̄
· (1 − αcμ)J−1 · 1 − xJ

1 − x
, (13)

where x = 1
η̄(1−αcμ) and B = α2 LMd

2 .
Remark 5 (Step Size Choice for Dynamic Workers): Theo-

rem 2 can generalize to allowing a dynamic step size αj that
varies with the number of iterations j = 1, · · · , J . We can

show that a static step size can achieve the fastest error decay
rate, due to the fact (shown formally in the Appendix of our
technical report [2]) that the error bound adapted from (11)
will still consist of a term that is proportional to E [G(w1)]
and a term proportional to the variance bound (cf. the two
terms in (11)). Moreover, the error bound is dominated by∏J

j=1(1 − αjcμ) as in the first term since the maximum

variance per iteration is diminishing with E

[
1
yj

]
due to

the exponentially increased number of provisioned workers.

We can finally show that a static step size 0 < α <
1− 1

ηχ

cμ can
minimize the error bound.

C. SGD Runtime Analysis With Volatile Workers

Now let us analyze how using volatile workers affects the
training runtime. The runtime has two components: 1) the time
required to complete the J SGD iterations, and 2) the idle time
when no workers are active and thus no iterations can be run.

Let R(yj) denote the runtime of the jth iteration in which
we have the set Yj of yj active workers. Suppose each worker
takes time rk to compute its gradient, where rk is a random
variable, for k = 1, · · · , yj . Fluctuations in computation
time are common especially in cloud infrastructure due to
background processes, node outages, network delays etc. [35].
Since the parameter server has to wait for all yj workers to
finish their gradient computations in a fully-synchronous SGD,
the runtime per iteration is,

R(yj) = max
k∈Yj

rk + Δ, (14)

where Δ is the time taken by the parameter server to update
w and push it to the yj workers. The expected runtime
E [R(yj)] increases with the number of active workers. For
example, if rk ∼ exp(μ), an exponential random variable that
is i.i.d. across workers and mini-batches, then E [R(yj)] ≈
(log yj)/μ + Δ. For N -synchronous SGD, we have

R(yj) = r(N) + Δ, (15)

for any given yj ≥ N , where r(N) is the N th order statistic of
random variables {rk}k∈Yj , which is the largest runtime of N
fastest workers among the active ones. In contrast to the fully-
synchronous counterpart, E [R(yj)] in (15) decreases with yj

and we have E [R(yj)] ≈ (log yj

yj−N)/μ + Δ if rk ∼ exp(μ).
For a N-batch-synchronous SGD, the general form of R(yj) is
intractable, but for rk ∼ exp(μ), it is equivalent to modeling
the arrival of the gradient update of each mini-batch as an
independent Poisson process with rate μ running in parallel,
and thus the total arrival rate of yj workers equals μyj for
any given yj . Since we aggregate N gradient updates each
iteration, we have E [R(yj)] ≈ N

yjμ .
Adding this per-iteration runtime to the idle time when no

workers are active, we can show that the expected wall-clock
time required to complete the J SGD iterations is

E [τ] =
J∑

j=1

E [R(yj)] + E [idle time with no active workers] .

We assume that if workers are interrupted during any
iteration i, we can store the intermediate results of the gra-
dient computations when the workers receive the interruption
notifications. If iteration i+1 starts before the workers resume
from the interruptions, the stored intermediate gradients will

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 21,2022 at 14:27:38 UTC from IEEE Xplore. Restrictions apply.

220 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 1, FEBRUARY 2022

be discarded, which can happen in the following cases: (1) for
fully-sync SGD, at least one worker was active and has
finished the mini-batch for iteration i; (2) for N -sync and
N -batch-sync SGD, N mini-batches (from N active workers
or any yj ≤ N workers) have been finished for iteration i.
Otherwise, the resumed workers continue the gradient compu-
tation based on the stored results as they are still in iteration i.
For example, when each worker is preempted uniformly at
random with probability q in each iteration (as described
in Remark 2), then the expected completion time becomes
E [τ] =

∑J
j=1 E [R(yj)] /(1 − qn). In fact, the ratio of the

total time that the job is running to the total completion
time equals the probability that at least one worker is active,
if this probability is static over time. This observation leads
to Lemma 1 in Section IV.

IV. OPTIMIZING SPOT INSTANCE BIDS

In this section, we use the results of Section III to derive
the bid prices and number of iterations that minimize the
cost of running distributed SGD with workers placed on spot
instances. We first consider the simple case in which we
submit the same bid for each worker in Section IV-A and
then consider the heterogeneous bid case in Section IV-B.

Spot Price and Bidding Model. Let pt denote the spot price
of each instance at time t. We assume pt is i.i.d. and is bounded
between a lower-bound

¯
p and an upper-bound p̄, similar to

prior works on optimal bidding in spot markets [15]. Let f(·)
and F (·) denote the probability density function (PDF) [36]
and the cumulative density function (CDF) [37] of pt. When
a bid b is placed for an instance, we consider that the provider
assigns available spot capacity to users in descending order
of their bids, stopping at users with bids below the prevailing
spot price. Thus, a worker is active only if its bid price exceeds
the current spot price. Hence, without loss of generality the
range of the bid price can also be assumed to be

¯
p ≤ b ≤ p̄.

Whenever a worker is active (b ≥ pt), the per-time cost
incurred for running it is equal to the prevailing spot price
pt (not the bid price). According to AWS’s policy for spot
instances [6], the bids are placed before instances are launched
and cannot be changed after that; therefore, we assume
that each worker’s bid is fixed throughout the model
training.

A. Identical Worker Bids

Suppose we choose bid price b for each of the n provisioned
workers. We first simplify the error and runtime in
Section III for this case, and then solve the cost min-
imization problem (1)-(3). Our results hold for all possi-
ble distributions of worker running times (Theorem 3) and
all our considered SGD variants by using their respective
error bounds (Theorem 1) and expected runtime per iteration
(Section III-C).

Observe that the n provisioned workers are either all
available or all interrupted depending on the bid price b.
This insight implies that E

[
y−1

j

]
= 1/n, and thus that

the error bound in Theorem 1 is independent of the bid b:
this bid affects only the frequency with which iterations are
executed, not the number of active workers in an iteration.
We can thus rewrite the error bound (10) as a function of J ,
the number of iterations required to reach error �. Formally,
we set φ̂ to be the right-hand side of (10) and J ≥ φ̂−1(�),

where φ̂−1(�) is the number of iterations required to ensure
that (our upper bound on) the expected error is no larger
than �.

We further observe that, the number of active workers yj

always equals n when the job is running. Thus, the expected
runtime per iteration can be rewritten as E [R(yj)] = E [R(n)].
Accounting for the idle time we can show that the expected
completion time is monotonic with b:

Lemma 1 (Completion Time in Terms of Bid Price): Using
the same bid price b for all workers, the expected completion
time to complete J iterations of synchronous SGD is

E [τ] = JE [R(n)] /F (b), (16)

which increases with J and is non-increasing in the bid
price b. The function F (·) is the CDF of the spot price.

We can further show the expected cost (defined in (1)) is
monotonically non-decreasing with b and J .

Lemma 2 (Cost in Terms of Bid Price): Using one bid price
for all workers, the expected cost of finishing a synchronous
SGD job is given by

E [C] = JnE [R(n)]

(
¯
p +

∫ b

¯
p

(
1 − F (p)

F (b)

)
dp

)
, (17)

which is non-decreasing in the bid price b and J . The function
F (·) is the CDF of the spot price.

Since both E [τ] and E [C] increase with J , we should
set J to be equal to φ̂−1(�) in order to reach the tar-
get error in the minimum time and at the minimum
cost.

Optimizing the Bid Price. Having shown that J = φ̂−1(�),
we now find the optimal bid b that minimizes the expected
cost (17) to solve the optimization problem (1)–(3).

According to Amazon’s policy [6], b is determined upon
the job submission without knowing the future spot prices
and will be fixed for the job’s lifetime. Although the user can
effectively change the bid price by terminating the original
request and re-bidding for a new VM, doing so induces
significant migration overhead. Thus, we assume that users
employ persistent spot requests: a worker with a persistent
request will be resumed once the spot price falls below its
bid price, exiting the system once its job completes. Using
Lemma 1 and Lemma 2, we can show the following theorem
for the optimal bid price b.

Theorem 3 (Optimal Uniform Bid): When we make an iden-
tical bid b for n workers and use them to perform distributed
synchronous SGD to reach error � within time θ, the optimal
bid price that minimizes the cost is b∗ = F−1

(
φ̂−1(�)E[R(n)]

θ

)
.

Theorem 3 provides a general form of the optimal bid price,
given the number of workers per iteration, n, the deadline θ,
and the target error bound �, for any distributions of the spot
price and training runtime per iteration. In particular, it holds
for all our considered SGD variants by using their respective
E [R(n)] as discussed in Section III-C.

B. Optimal Heterogeneous Bids

We next extend our results from Section IV-A to find the
optimal bidding strategy allowing different bids for different
workers. This strategy is motivated by the observation that
bidding lower prices for some workers yields a larger number
of active workers when the spot price is relatively low,

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 21,2022 at 14:27:38 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: MACHINE LEARNING ON VOLATILE INSTANCES: CONVERGENCE, RUNTIME, AND COST TRADEOFFS 221

which possibly improves the training error but may not cost
much.

To solve for the closed-form expression of the optimal
bids from this optimization problem, we first examine two
distinct bid prices bh and bl for two groups of workers for
a fully-synchronous SGD with arbitrary runtime distribution
in Section IV-B1, and then derive the optimal bids when
allowing a more flexible choice of bids for N -synchronous and
N -batch-synchronous SGD with exponential runtime distrib-
ution in Sections IV-B2 and IV-B3.

1) Fully-Synchronous SGD: Formally, we place bids of
bh for workers 1, · · · , nh and bl (< bh) for workers nh +
1, · · · , n. We define the random variable y(b) ∈ {nh, n}
as the number of active workers when the bid prices are
	b = (bh, bl); yj is then a realization of y(b). Recall that
the times when 0 workers are active are not considered as
an SGD ‘iteration’. Thus, y(b) can only be either nh (with
probability F (bh)−F (bl)

F (bh)) or n (with probability F (bl)/F (bh))
in each iteration.

Optimized Bids. We initially assume that nh, the number
of workers in the first group, and J , the required number of
iterations, are fixed; thus, we optimize the trade-off between
the expected cost, expected completion time, and the expected
training error using only the bid prices 	b. After deriving the
closed-form optimal solutions of bh and bl in Theorem 4,
we discuss co-optimizing nh and J with the bids 	b. The
expected cost minimization problem (1)–(3) then becomes:

min
�b

J

∫ bh

¯
p

E

[
R(b, p)

]
y(b)p

f(p)
F (bh)

dp (18)

subject to: E

[
φ̂(b)

]
≤ � (Error constraint) (19)

J

F (bh)

∫ bh

¯
p

E

[
R(b, p)

] f(p)
F (bh)

dp ≤ θ (20)

p̄ ≥ bh ≥ bl ≥
¯
p, ∀i ≤ j (21)

To derive the cost and completion time expressions in (18)
and (20) respectively, we express the expected runtime of
iteration j as E

[
R(b, p)

]
, a function of the bids and price.

For simplicity, we assume that the spot prices do not change
within each iteration. In practice, the spot price changes at
most once per hour [38], compared to a runtime of several
minutes per iteration, and thus this assumption usually holds.
Note that we did not need this assumption for the identical bid
case in Section IV-A since all workers become active/inactive
at the same time with a uniform bid.

To derive the optimal bid prices, we first relate the dis-
tribution of the spot price and our bid prices to the training
error through the number of active workers, i.e., y(b). From
Theorem 1, the expected error is at most � if y(b) satisfies:

E

[
1

y(b)

]
≤ 2cμ

(
� − (1 − αcμ)J

E [G(w1)]
)

αLM (1 − (1 − αcμ)J)
� Q(�) (22)

Further, we simplify E

[
R(b, p)

]
to be function E [R(X)],

the expected runtime per iteration given X workers are active.
We then provide closed-form expressions for the optimal bid
prices through Theorem 4.

Theorem 4 (Optimal-Two Bids With a Fixed J): Suppose
the objective function G(·) satisfies Assumptions 1–2. Given a
number of iterations (J) and maximum allowed error (�) that

can guarantee 1/n < Q(�) ≤ 1/nh (Q(�) is defined as the
right-hand side of (22)),1 a fixed step size α, and a feasible
deadline (θ ≥ JE [R(n)]), we have the optimal bid prices b∗h
and b∗l :

F (b∗h) =
J

θ

(
(E [R(n)] − E [R(nh)])

1
nh

− Q(�)
1

nh
− 1

n

+E [R(nh)]

)

F (b∗l) =
1

nh
− Q(�)

1
nh

− 1
n

× F (b∗h), (23)

for any i.i.d. spot prices and any i.i.d. runtime per mini-batch,
i.e., F (·) and E [R(n)] (or E [R(nh)]) do not change during
the training process.

For brevity, we use Figure 3 to illustrate our proof of
Theorem 4. The key steps are: (i) change the variables of
the optimization problem (18) to be F (bh) and γ = F (bl)

F (bh) ;
(ii) show that the expected cost, completion time, and error are
monotonic w.r.t. to F (bh) and γ. Intuitively, the expected error
should depend only on the number of active workers given that
some workers are active, which is controlled by the relative
difference between F (bh) and F (bl): γ. Formally, the error

bound decreases with E

[
y(b)−1

]
. Applying E

[
y(b)−1

]
=

1
F (bh)

(
F (bh)−F (bl)

nh
+ F (bl)

n

)
= 1

nh
− 1

γ

(
1

nh
− 1

n

)
to (22)

gives us the optimal γ, since the expected cost increases with
both F (bh) and γ. We then choose F (b∗h) to the one that yields
E [τ] = θ (making constraint (20) tight). Intuitively, F (b∗h)
should be high enough to guarantee that some workers are
active often enough that the job completes before the deadline.

Co-optimizing nh and 	b. If nh is not a known input but a
variable to be co-optimized with 	b, we can write nh and b∗l in
terms of F (b∗h) according to (23) and plug them into (18)-(21)
to solve for b∗h first, and then derive b∗l and the optimal nh.

Co-optimizing J and 	b. Taking J as an optimization
variable may allow us to further reduce the job’s cost. For
instance, allowing the job to run for more iterations, i.e.,
increasing J , increases Q(�) (the right-hand side of (22)).

We can then increase E

[
1

y(�b)

]
by submitting lower bids bl,

making it less likely that workers nh + 1, . . . , n will be
active, while still satisfying (22). A lower bl may decrease
the expected cost by making workers less expensive, though
this may be offset by the increased number of iterations.
To co-optimize J , we show it is a function of 	b and �:

Corollary 2 (Relationship of J and 	b): To guarantee
a training error ≤ �, the number of iterations J should
be at least

J = log(1−αcμ)

� − αLM
2cμ E

[
1

y(�b)

]
E [G(w1)] − αLM

2cμ E

[
1

y(�b)

] . (24)

For brevity, we show the idea of co-optimizing J and 	b:
We first replace J in (18) and (20) by (24). Constraint (19)
is already guaranteed by (24) and can be removed. We then
solve for the remaining optimization variables, the bids 	b.

1If � and J are so large such that Q(�) > 1/nh, it means that using nh

workers when the job is running is sufficient to achieve the training error
(trivial setting); else if Q(�) < 1/n, it means that even having n workers all
active whenever the job is running cannot satisfy the error bound requirement
(infeasible setting). We omit these two problem settings.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 21,2022 at 14:27:38 UTC from IEEE Xplore. Restrictions apply.

222 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 1, FEBRUARY 2022

Fig. 3. Illustration of how the expected cost, completion time and error vary w.r.t. F (bh) and γ = F (bl)
F (bh)

. As a larger γ leads to a smaller expected error
(Fig. 3a) but a larger expected cost (Fig. 3b) and completion time (Fig. 3e), and the expected error is only controlled by γ, the optimal γ should be the
smallest possible γ, i.e., the one that yields error = �. The optimal F (bh) should be the one that yields the completion time equal to the deadline under the
optimal γ (Fig. 3d).

2) N -Synchronous SGD: We now consider N -synchronous
SGD, where in each iteration, the parameter server waits for
N (< n) workers. For this SGD variant, we guarantee that at
least N workers are active when the job is running (pt ≤ b1),
avoiding cases where fewer than N workers are active at the
start of the iteration and the algorithm must wait to start the
next iteration until the spot price falls sufficiently far that more
workers become active. Hence, we suppose that N +1 workers
have the same bid price b1, and that the bid prices for workers
N + 2, · · · , n are b2, · · · , bn−N , respectively with b1 ≥ b2 ≥
. . . ≥ bn−N . Thus, N ≤ y(pt,	b) ≤ n when

¯
p ≤ pt ≤ b1.

Since we allow a distinct bid price for each remaining
worker, the above model is harder to analyze than the two
bid prices for two groups of workers adopted in Theorem 4.
To derive the closed-form of the optimal bid prices, we sim-
plify the problem by assuming that the running time per mini-
batch is randomly drawn from an exponential distribution,
as assumed in [23], [39]. Surprisingly, we can prove that the
optimal bid prices should be the same for all workers:

Theorem 5 (N-Sync SGD With Exponential Runtimes): Sup-
pose the running time per iteration is i.i.d. drawn from an
exponential distribution exp(λ) over all time and all workers
and the number of iterations J = φ̂−1(N, �). Then the optimal
bid prices are:

bi = bj = F−1

(
φ̂−1(�, N) log n

n−N

λθ

)
.

Intuitively, since N -synchronous SGD always processes N
mini-batches per iteration, having more workers active when
the spot price is low does not change the error. It does,
however, increase the cost due to paying for all workers’
computing usage. If the mini-batch runtimes are exponentially
distributed, this is not offset by the lower iteration runtime due
to canceling stragglers. It is then optimal to have the same
number of active workers in each iteration, i.e., uniform bids.

Proof Sketch: While the formal proof can be found in the
Appendix of our technical report [2], we provide the outline
of the proof here. The basic idea to prove Theorem 5 consists
of three parts: 1) the expected runtime per iteration and the
expected completion time will be non-increasing with {bi}n

i=1;
2) the expected cost is non-decreasing with the highest bid
price b1 while 3) non-increasing with all the other (lower)
bid prices. The third part can be intuitively explained: if any
bi(2 ≤ i ≤ n − N) increases, the probability of having only
workers 1, · · · , N + i − 1 active is non-increasing while the
probability of having workers 1, · · · , N + i active is non-
decreasing; and the potential decrease in cost due to the former
probability change is at least the increase in cost due to the

latter given the particular form of the expected runtime per
iteration and workers in this scenario. �

3) N -Batch-Synchronous SGD: We finally consider
N -batch-synchronous SGD, where the parameters are
updated and a new iteration begins once N mini-batches are
processed. We consider a more general bidding model where
each worker is allowed to have a distinct bid price, denoting
the bid prices for workers 1, · · · , n as b1 ≥ b2 ≥ · · · ≥ bn.

As in Section IV-B2, we assume that the wall-clock time of
finishing each mini-batch for all workers is an i.i.d. random
variable drawn from an exponential distribution with parame-
ter λ. Unlike N -synchronous SGD, for N -batch-synchronous
SGD, workers can continuously process mini-batches in each
iteration, until a total of N mini-batches are finished. There-
fore, the arrival rate of mini-batch completion at each time
equals y(pt,	b)λ. We then observe that the product of the num-
ber of active workers y(pt,	b) and the running time 1

y(pt,�b)λ

will be 1
λ , a constant. This product is the Resource-time, which

is the total amount of resource units in each iteration we need
to pay for. Since it is a constant, the expected cost of each
iteration will be determined only by the spot price distribution,
the largest bid price b1, and λ. This result implies that the
optimal bid prices are the same for all workers:

Theorem 6 (N-Batch-Sync SGD With Exponential Runtime):
Given a deadline θ and maximum error threshold �, suppose
the runtime per iteration follows an exponential distribution
exp(λ) for all workers. Then the optimal cost-minimizing bid

prices equal F−1
(

Nφ̂−1(�,N)
nλθ

)
for each worker.

The proof of Theorem 6 is given in the Appendix of [2].
Theorem 6 indicates that a smaller bid price comes with

a larger number of workers (n), a larger deadline (θ), and
a smaller number of required mini-batches (Nφ̂−1(�, N)) to
achieve a smaller-than-� error. Further, it also implies that as
we increase the number of workers, n, the expected cost keeps
decreasing until it becomes Nφ̂−1(�,N)

λ ×
¯
p. This non-intuitive

conclusion follows from the exponentially distributed running
times per mini-batch, under which the expected running time
per iteration converges to zero as n → ∞.

V. OPTIMAL NUMBER OF PREEMPTIBLE INSTANCES

In this section, we consider preemptible instances offered by
other cloud platforms, e.g., low priority VMs from Microsoft
Azure [8] and preemptible instances from Google Cloud
Platform [7]. Unlike spot instances where users can specify the
maximum prices they are willing to pay, on these platforms
users can only decide the number of provisioned instances to
request in each iteration, as well as the number of iterations.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 21,2022 at 14:27:38 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: MACHINE LEARNING ON VOLATILE INSTANCES: CONVERGENCE, RUNTIME, AND COST TRADEOFFS 223

Therefore, in this section, we choose to optimize the number
of instances (workers) and assume the instance price is stable
during the entire training time [7]. To better quantify the
relationship between the number of active workers yj and
provisioned workers n, we consider the two preemption dis-
tributions in Lemma 3: a uniform distribution and a binomial
distribution where each worker has an equal and independent
probability of being preempted. We will make use of the fact
that for both distributions, there exists a parameter χ > 0 such
that E

[
1
yj

]
≤ O

(
1

nχ

)
(same as the upper-bound assumption

on E

[
1
yj

]
in our error bounds from Theorem 2 and

Corollary 1). The problem of minimizing the job cost is then

equivalent to minimizing E

[∑J
j=1 yjR (yj)

]
, subject to the

completion time and error constraints.
Lemma 3 (Example Distributions of yj): If the number of

active workers yj follows a uniform distribution P[yj = k] =
1
nj

, ∀k = 1, · · · , nj , we have E

[
1
yj

]
≤ O

(
n
− 1

2
j

)
; if each

worker is preempted with probability q each iteration, we have

E

[
1
yj

]
≤ O

(
1

nχ
j

)
for some χ ∈ (0, 1).

We use our error bound derived in Theorem 1 and the above

relationship E

[
1
yj

]
≤ O

(
1

nχ

)
to find closed-form solutions

for the optimal number of workers n and iterations J when
χ ≥ 1 in Theorem 7, which holds for the fully-synchronous,
N -synchronous, and N -batch-synchronous SGD algorithms.
We then optimize our strategy of exponentially increasing the
number of provisioned workers over iterations by using our
improved error bound with a dynamic number of workers from
Theorem 2.

Theorem 7 (Co-Optimizing n and J): Suppose E [yj] ∝
n and E

[
1
yj

]
≤ d

n (d > 0), the probability of no active
workers does not depend on n, and the runtime per iteration
is deterministic. Then the completion time constraint (3) is
simply J ≤ θδ where δ is a constant, and the optimal J and
n (denoted by J∗ and n∗) satisfy:

J∗ = min

{
arg min

J∈{J1,J2}

BJ(1 − βJ)
(1 − β)(� − AβJ)

, �θδ�
}

,

J1 =
⌊
J̃
⌋

, J2 =
⌈
J̃
⌉

,
AβJ̃

(
J̃ ln 1

β + 1 − βJ̃
)

1 + βJ̃ (J̃ ln 1
β − 1)

= �,

n∗ =

⌈
B(1 − βJ̃)

(1 − β)(� − AβJ̃)

⌉
,

where β = 1 − αcμ, A = E [G(w1)], and B = α2 LMd
2 .

Cost Minimization with Negligible Stragglers. We also
consider the strategy of increasing the provisioned workers per
iteration as in Theorem 2 and optimize η, the rate of increasing
the number of provisioned workers, to minimize the expected
cost, subject to the error and completion time constraints. If we
ignore straggler effects, we can define E [R(yj)] = R, ∀j.
Suppose zj denotes the number of active workers including
the case zj = 0, and zj follows a binomial distribution with
parameter nj and probability q (the probability that each
instance is inactive), namely, the probability that zj = 0
equals qn1ηj−1

. Given the error bound in Theorem 2, E [yj] =
nj(1 − q) = n1(1 − q)ηj−1, and E

[
1
yj

]
≤ d

nχ
j

for some

0 < χ < 1 according to Theorem 2, our cost minimization
problem can be modified as follows.

minimizeη

J∑
j=1

R(1 − q)n1η
j−1 (25)

subject to :
J∑

j=1

R/(1 − qn1ηj−1
) ≤ θ (26)

AβJ +
BβJ−1

(
1 − (1

βηχ)J
)

nχ
1

(
1 − 1

βηχ

) ≤ � (27)

ηχ > 1/β, (28)

where β = 1 − αcμ, A = E [G(w1)], and B = α2 LMd
2 . For

any given J , both the objective function and constraints are
convex functions of η (refer to the operations that preserve
convexity in [30]). Therefore, we can use standard algorithms
for convex optimization to solve for the optimal η.

Modified (26) to Capture Straggling: We can also solve
for the optimal η when workers’s per-iteration runtimes follow
an exponential distribution (exp(λ)), capturing some straggler
effects, and each worker is preempted with probability q.
We first consider the fully-synchronous SGD. We replace
the constant per-iteration runtime R in (25) and (26) with
E [R(yj)] ≈ 1

λ log
(
n1(1 − q)ηj−1

)
in the completion time

constraint (3), assuming n1(1 − q) ≥ 1 to ensure that the
approximated E [R(yj)] is valid. This constraint accounts for
the fact that as we have more active workers in each iteration,
the per-iteration runtime will likely increase because we need
to wait for the slowest worker to finish. Similar to the case
without stragglers, for each fixed J , our optimization problem
for this case has a convex objective function and monotonic
error constraint in η. For the completion time constraint with
any fixed J , the left-hand side of (26) is monotonically
increasing if

∑J
j=1

1
x (1 − qx) + log((1 − q)x)qx log(q) ≥ 0,

where x := n1η
j−1, which essentially means that if J and

(or) n1 are (is) sufficiently large and (or) q is relatively
low, the expected completion time will monotonically increase
with η. For example, one can verify that if q ≤ 0.8,
the above monotonicity holds for any J and x. For large q
that approaches 1, the expected completion time could first
decrease with η when η is small and then increase with η
when η is large. Therefore, we can solve for the optimal η
with any fixed J by first converting (26) and (27) to be feasible
ranges of η and then solve for the η by minimizing (25) within
the feasible range. Moreover, there exists a finite maximum
number of iterations J for which the modified (26) is feasible.
Thus, we can jointly optimize the optimal rate of increase in
the number of workers, η, and J by iterating over all possible
values of J .

Other SGD variants. We next consider Nj-synchronous
and Nj-batch-synchronous SGD, where we wait for
Nj = n̄η̄j−1 mini-batches to be processed in each iteration j.
Based on our Remark 4, the appropriate error constraint can
be adapted from (27) by replacing nχ

1 and ηχ by n̄ and η̄,
respectively, where 1 < η̄ ≤ η, 1 ≤ n̄ ≤ qn1, ensuring
that in each iteration the number of mini-batches to wait
for is no larger than the expected number of active workers.
We can approximate the expected runtime per iteration by
E [R(yj)] ≈ 1

λ log((1−q)n1ηj−1

(1−q)n1ηj−1−n̄η̄j−1) for Nj-synchronous

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 21,2022 at 14:27:38 UTC from IEEE Xplore. Restrictions apply.

224 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 1, FEBRUARY 2022

SGD and E [R(yj)] ≈ n̄η̄j−1

λ(1−q)n1ηj−1 for Nj-batch-synchronous
SGD. One can verify that the expected cost is convex in η for
Nj-synchronous and is a constant for Nj-batch-synchronous
SGD. The error constraint is then no longer dependent with η,
and the expected completion time is monotonically decreasing
with η, meaning constraint (26) is equivalent to a lower-
bound on η. Combined with the assumption that η ≥ η̄ > 1,
the optimal η can be found by minimizing the convex objective
function subject to a lower-bound of η, for each J . Similar
to the fully-synchronous case, for both Nj-synchronous and
Nj-batch-synchronous SGD, we can jointly optimize the opti-
mal rate of increase in the number of workers, η, and J by
iterating over all possible values of J .

VI. EXPERIMENTAL VALIDATION

We evaluate our bidding strategies from Section IV and our
strategy to optimize the number of provisioned workers from
Section V on the CIFAR-10 image classification benchmark
dataset in three sets of experiments. We test the ResNet-50 [40]
model on our local cluster with multiple NVIDIA TitanX
GPUs, a small Convolutional Neural Network (CNN) [41] with
two convolutional layers and three fully connected layers on
Amazon EC2’s c5.xlarge spot instances, and a larger CNN
featuring two convolutional layers with more channels and
two fully connected layers on Google Cloud Platform’s Pre-
emptible n1-standard-2 VM Instances [18]. We use synthetic
pricing data and historical price traces of AWS Spot instances
to test our bidding strategies in the first and second sets
of experiments, while experiments on the GCP Preemptible
instances are subject to the prevailing prices and preemp-
tions imposed by the GCP platform while the experiments
ran. The distributed SGD algorithms for all experiments are
implemented based on Ray [42] and Tensorflow [43].

Choosing the Experiment Parameters. By default, we run
J = 5000 iterations for our ResNet-50 experiments and
J = 10000 iterations for the experiments on both the Spot
instances and GCP Preemptible instances. We set the deadline
(θ) to be twice the estimated runtime of using 8 workers to
process J iterations without interruptions and the step size α
to be 0.1 by default. We estimate that Q(�) ∈ [1

n , 1
n1

] for our
choices of � and J (� = 0.98 for ResNet-50 and � = 0.65
for the small CNN), demonstrating the robustness of our opti-
mized strategies to mis-estimations. To estimate the probability
distribution of the spot prices, we first consider two synthetic
spot price distributions for the ResNet-50 experiments: a
uniform distribution in the range [0.2, 1] and a Gaussian
distribution with mean and variance equal to 0.6 and 0.175;
we draw the spot price when each iteration starts and re-draw
it every 4 seconds after the job is interrupted. We download
the historical price traces of c5.xlarge spot instances using
Amazon EC2’s DescribeSpotPriceHistory API for the small
CNN experiments, demonstrating that our bidding strategy is
robust to non-i.i.d spot prices.

A. Advantage of Our Bidding Strategies

We evaluate the bidding strategies with both the optimal
single bid price for all workers (Optimal-one-bid) and
the optimal bid prices for two groups of workers derived
in Theorem 4 (Optimal-two-bids) against an aggressive
No-interruptions strategy that chooses a bid price larger than
the maximum spot price. To further minimize the expected

Fig. 4. The dynamic strategy (a,b) achieves the highest training accuracy
under any given cost using the ResNet-50 model for CIFAR-10 classification,
under synthetic spot prices. The markers on the curves in (a,b) show the cost
when achieving a 90% training accuracy; at which point No-interruptions,
Optimal-one-bid, and Optimal-two-bids respectively increase the cost by
134%, 82%, 46% under the uniform distribution, and 103%, 101%, 43%
under the Gaussian distribution relative to the dynamic strategy.

Fig. 5. Under historical price traces of the c5x.large spot instances in the
region of us-west-2a (Oregon) and using a small CNN for CIFAR-10 classifi-
cation, Optimal-one-bid and Optimal-two-bids can reduce the cost by 26.27%
and 65.46% respectively compared with No-interruptions (Figure 5a) while
achieving 96.78% and 96.46% of the training accuracy that No-interruptions
achieves (Figure 5b).

total cost while guaranteeing a low training/test error, we pro-
pose a Dynamic strategy, which updates the optimal two
bid prices when increasing the total number of workers.
More specifically, we initially launch four workers (n1 = 2,
n = 4) and apply our optimal two bid prices. After completing
4000 iterations, we add four more workers (n1 = 4, n = 8)
and re-compute the optimal bids by subtracting the consumed
time from the original deadline θ and taking J to be the
number of remaining iterations. This dynamic strategy can
be regarded as a coarse grained version of our strategy of
exponentially increasing the number of provisioned workers
each iteration (cf. Theorem 2 and Section V) – it adds extra
workers once instead of persistently adding workers in each
iteration.

Figures 4 and 5 compare the performance of our
strategies on synthetic and real spot prices, respectively.
Figures 4a and 4b show that our dynamic strategy leads to a
lower cost and the no interruptions benchmark to a higher cost
for any given accuracy, compared to the optimal-one-bid and
optimal-two-bids strategies. In Figures 4c and 4d, we indi-
cate the cumulative cost as we run the jobs. The markers
indicate the costs where we achieve 90% training accuracy;
while the no interruptions benchmark achieves this accuracy

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 21,2022 at 14:27:38 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: MACHINE LEARNING ON VOLATILE INSTANCES: CONVERGENCE, RUNTIME, AND COST TRADEOFFS 225

Fig. 6. Using n estimated based on Theorem 7 achieves higher accuracy per
dollar than randomly setting n (Figure 6a). Compared with using 1 worker for
J = 10000 iterations, dynamically setting nj = 1.0004j−1 and the number
of iterations according to Theorem 2 with χ = 1 achieves higher accuracy
per dollar on EC2 spot instances.

Fig. 7. Compared with using 16 workers, dynamically setting nj =
min{1.0004j−1, 16} achieves the same accuracy after 10000 iterations
(Figure 7a), but can reduce the cost by at least 46% (Figure 7b).

much faster, it costs nearly three times as much as our dynamic
strategy and twice as much as our optimal-two-bids strategy.
Figures 5a and 5b show that our optimal-one-bid and optimal-
two-bids strategies can significantly reduce the cost under
the real spot prices while achieving almost the same training
accuracy as the no interruptions benchmark.

B. Advantage of Our Choices of the Number of Workers

To verify our results in Section V, we conduct experiments
on both AWS Spot instances and GCP Preemptible instances.

1) AWS experiments: We first simulate No preemption by
running 2 workers for 10000 iterations without preemption and
observe that the final accuracy can approach 63%. We then
suppose instances are preempted with probability p = 0.5
and provision n = 4 workers, using the fact that the optimal
n for each fixed J is proportional to 1/(1 − p) and aiming
to achieve the same accuracy 65%. Co-optimizing n and J
(Theorem 7) may yield further cost improvements. Figure 6a
shows that using our estimated n achieves a better accuracy
per dollar than randomly choosing n. Note that to simulate
various preemption probability distributions used in Figure 6a,
we manually set the random preemption events in our code
and use on-demand prices as our bids to simulate a lack of
control over bidding as considered in Section V. We further
show in Figure 6b that our strategy Dynamic nj, which
exponentially increases nj by a fixed rate 1.0004 and runs
for a much smaller number of iterations set according to
Theorem 2, achieves a better accuracy per dollar, compared
with using 1 worker for J = 10000 iterations (Static n=1).

2) GCP experiments: Following Figure 6b, we compare our
dynamic strategy with the rate η = 1.0004 and a maximum
number of workers nj ≤ 16 with the strategy of always using
16 workers (Static n=16). Using 16 workers for the entire
training leads to a faster accuracy convergence than gradually
increasing the workers to 16 as shown in Figure 7a. However,
gradually increasing the number of workers leads to a higher

Fig. 8. Using a ratio η > 1 to set the number of workers according to
nj = min{ηj−1, 16} for our dynamic strategy achieves a higher accuracy
(Figure 8a) and higher accuracy-per-dollar (Figure 8b) than using η = 0.0096,
which decreases the number of workers.

accuracy per dollar, shown in Figure 7a, demonstrating the
advantage of our dynamic strategy in cost reduction subject
to the accuracy constraint. To further evaluate our strategy
of using dynamic workers with a fixed rate η, we compare
different choices of η in Figure 8 where the choices for η > 1
and η < 1 represent increasing and decreasing the number
of the workers over iteration, respectively. Figures 8a and 8b
show that increasing the number of workers can achieve
both a steady accuracy increase and a smaller accuracy per
dollar, compared to decreasing the number of workers over
iterations, verifying our motivation observed from Theorem 1
that increasing the number of workers over iterations achieves
a better error bound as proven in Theorem 2.

C. Improving the Step Size Based on Our Error Bounds

While picking the right step size α is crucial to the training
success of ML jobs [23], [24], in practice the step size is
estimated based on experimental experience with few studies
showing how the number of workers affects the best choice
of step size. From our Theorem 1, we observe that when the
number of iterations is sufficiently large, the error bound is
dominated by the term 1

2α2LM
∑J

j=1(1−αcμ)J−j
E

[
1
yj

]
and

converges to αLM
2 E

[
1
yj

]
when J → +∞, i.e., approximately

αLM
2n when preemption rarely happens. This observation moti-

vates us to use a larger α when n is larger, which decreases
the error bound faster for early iterations (where (1 − αcμ)J

dominates (10)) while a larger n can offset the increased
asymptotic error due to using a larger α. In the following
experiments, we evaluate this insight by choosing α = 0.03 n
in Figure 9a. The results verify our theoretical insight that
proportionally increasing the step size with the number of
workers n accelerates the accuracy convergence compared
to using a step size independent of n, while achieving a
slightly better asymptotic error. In contrast, in Figure 9b, all
experiments use the same step size 0.1 and show a similar
convergence rate throughout the training. Figure 9a indicates
that in practice we could use increase the learning rate on
the same order of the increase of the number of workers to
achieve our target accuracy in a shorter training time, which
is consistent with a recent strategy of linearly scaling the step
size when the mini-batch size is increased [44].

We further verify our insights gained from Theorem 2 for
our strategy of increasing the number of workers with a fixed
rate η over iterations. Theoretically, for static provisioned
workers, an O(1

j) diminishing step size can improve the
asymptotic error to be zero, in contrast to the error converging
to a positive constant as achieved with a static step size
(see our Theorem 1). However, no existing study shows the

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 21,2022 at 14:27:38 UTC from IEEE Xplore. Restrictions apply.

226 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 1, FEBRUARY 2022

Fig. 9. Linearly scaling the step size with the number of provisioned workers
(α = 0.03×n in Figure 9a) improves the accuracy convergence rate compared
to using the same step size when varying the number of provisioned workers
(α = 0.1 in Figure 9b).

Fig. 10. Using a diminishing step size (αj choice 3 or 4) improves the
accuracy when using a static n = 4 provisioned workers (Figure 10a), but
does not significantly affect the dynamic strategy which increases the number
of workers with a constant rate (η = 1.0002 in Figure 10b).

best choice of step size for dynamic provisioned workers.
Our Theorem 2 indicates that the standard O(1

j) diminishing
step size does not further improve the exponential error
decay rate achieved by using a static step size when the
number of workers geometrically increases over the iterations.
To verify our hypothesis, we first construct four choices of
step size: 1) α = 0.1; 2) αj = min

(
0.03 × 1.2�

j
1000 �, 0.18

)
;

3) αj = 0.03 + 0.15
� j

1000 �+1
; and 4) αj = 0.18

� j
1000 �+1

. Figure 10a

shows that when the number of workers is static, the diminish-
ing step sizes (Choices 3 and 4) achieve a faster convergence
than both a static step size (Choice 1) and an increasing
step size (Choice 2). In contrast, Figure 10b shows that the
accuracy convergence is nearly independent of our step size
choice when the number of workers geometrically increases.
This result verifies our Theorem 2 and Remark 5, which
indicate that any sequence of step sizes that is upper-bounded

by
1− 1

ηχ

cμ can achieve exponential decay convergence when
using geometrically increased numbers of workers.

VII. DISCUSSION AND CONCLUSION

In this work, we consider the use of volatile workers that run
distributed SGD algorithms to train machine learning models.
We first focus on Amazon EC2 spot instances, which allow
users to reduce job cost at the expense of a longer training time
to achieve the same model accuracy. Spot instances allow users
to choose how much they are willing to pay for computing
resources, thus allowing them to control the trade off between
a higher cost and a longer completion time or higher training
error. We quantify these trade-offs and derive new bounds
on the training error when using time-varying numbers of
workers. We finally use these results to derive optimized
bidding strategies for users on spot instances and propose
practical strategies for scenarios when users cannot control
preemption of their instances by submitting bids. We validate

these strategies by comparing them to heuristics when training
neural network models on the CIFAR-10 image dataset.

Our proposed strategies are an initial step towards a more
comprehensive set of methods that allow distributed ML
algorithms to exploit the benefits of volatile instances. As a
simple extension, one might adapt the bids over time as we
obtain better estimates of the iteration running time. Our
bidding strategies might also be generalized to allow different
bids for each worker. Even more generally, one can envision
dividing a resource budget across workers, with the budget
controlling each worker’s availability. This budget might be
a monetary budget when workers are run on cloud instances,
but if the workers are instead run on mobile devices, it might
instead represent a power budget that controls how often these
devices can afford to process data. We will also investigate
adjusting the step size (learning rate) based on the worker
volatility, as our theoretical results and experiments for our
dynamic strategy imply that the optimal way to set the step
size in improving the accuracy can depend on our strategy to
adjust the number of workers.

ACKNOWLEDGMENT

The authors would like to thank Fangjing Wu and
Wanquan Wu for their assistance with the experimental setup.

REFERENCES

[1] X. Zhang, J. Wang, G. Joshi, and C. Joe-Wong, “Machine learning
on volatile instances,” in Proc. IEEE Conf. Comput. Commun. (IEEE
INFOCOM), Jul. 2020.

[2] Machine Learning on Volatile Instances: Convergence, Runtime,
and Cost Tradeoffs. [Online]. Available: http://andrew.cmu.edu/user/
cjoewong/Spot_ML.pdf

[3] H. Robbins and S. Monro, “A stochastic approximation method,” Ann.
Math. Statist., vol. 22, no. 3, pp. 400–407, Sep. 1951.

[4] L. Bottou, “Large-scale machine learning with stochastic gradient
descent,” in Proc. COMPSTAT, 2010.

[5] J. Dean et al., “Large scale distributed deep networks,” in Proc. Int. Conf.
Neural Inf. Process. Syst. (NIPS), vol. 1, Dec. 2012, pp. 1223–1231.

[6] Amazon EC2. (2019). Amazon EC2 Spot Instances. [Online]. Available:
https://aws.amazon.com/ec2/spot/

[7] Google Cloud Platform. (2019). Preemptible Virtual Machines. [Online].
Available: https://cloud.google.com/preemptible-vms/

[8] Microsoft Azure. (2018). Announcing Low-Priority VMS on Scale
Sets Now in Public Preview. [Online]. Available: https://azure.
microsoft.com/en-us/blog/low-priority-scale-sets/

[9] Amazon EC2. (2019). Spot Price Overrides. [Online]. Available:
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-
fleet.html#spot-price-overrides

[10] F. Yang and A. A. Chien, “ZCCloud: Exploring wasted green power
for high-performance computing,” in Proc. IEEE Int. Parallel Distrib.
Process. Symp. (IPDPS), May 2016, pp. 1051–1060.

[11] A. A. Chien, F. Yang, and C. Zhang, “Characterizing curtailed
and uneconomic renewable power in the mid-continent indepen-
dent system operator,” 2016, arXiv:1702.05403. [Online]. Available:
http://arxiv.org/abs/1702.05403

[12] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh,
and D. Bacon, “Federated learning: Strategies for improving com-
munication efficiency,” 2016, arXiv:1610.05492. [Online]. Available:
http://arxiv.org/abs/1610.05492

[13] Z. Tao and Q. Li, “eSGD: Communication efficient distributed deep
learning on the edge,” in Proc. USENIX Workshop Hot Topics Edge
Comput. (HotEdge), 2018.

[14] Y. Tu, Y. Ruan, S. Wagle, C. G. Brinton, and C. Joe-Wong, “Network-
aware optimization of distributed learning for fog computing,” in Proc.
IEEE Conf. Comput. Commun. (IEEE INFOCOM), Jul. 2020, pp. 71–84.

[15] L. Zheng, C. Joe-Wong, C. W. Tan, M. Chiang, and X. Wang, “How
to bid the cloud,” in Proc. ACM Conf. Special Interest Group Data
Commun., Aug. 2015.

[16] A. Krizhevsky, V. Nair, and G. Hinton. The CIFAR-10 Dataset. [Online].
Available: https://www.cs.toronto.edu/~kriz/cifar.html

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 21,2022 at 14:27:38 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: MACHINE LEARNING ON VOLATILE INSTANCES: CONVERGENCE, RUNTIME, AND COST TRADEOFFS 227

[17] P. Sharma, D. Irwin, and P. Shenoy, “How not to bid the cloud,” in Proc.
USENIX Conf. Hot Topics Cloud Comput. (HotCloud), 2016.

[18] Google Cloud Platform. (2019). Preemptible VM Instances. [Online].
Available: https://cloud.google.com/compute/docs/instances/preemptible

[19] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao, “Optimal distrib-
uted online prediction using mini-batches,” J. Mach. Learn. Res., vol. 13,
pp. 165–202, Jan. 2012.

[20] A. Ghosh, R. K. Maity, A. Mazumdar, and K. Ramchandran, “Com-
munication efficient distributed approximate Newton method,” in Proc.
IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2020, pp. 1000–1008.

[21] M. Kamp et al., “Efficient decentralized deep learning by dynamic
model averaging,” 2018, arXiv:1807.03210. [Online]. Available:
http://arxiv.org/abs/1807.03210

[22] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and
B. A. Y. Arcas, “Communication-efficient learning of deep networks
from decentralized data,” 2016, arXiv:1602.05629. [Online]. Available:
http://arxiv.org/abs/1602.05629

[23] S. Dutta, G. Joshi, S. Ghosh, P. Dube, and P. Nagpurkar, “Slow and
stale gradients can win the race: Error-runtime trade-offs in distributed
SGD,” in Proc. AISTATS, 2018, pp. 75–82.

[24] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-
scale machine learning,” SIAM Rev., vol. 60, no. 2, pp. 223–311, 2018.

[25] D. Wang, G. Joshi, and G. W. Wornell, “Efficient straggler replication
in large-scale parallel computing,” ACM Trans. Model. Perform. Eval.
Comput. Syst., vol. 4, no. 2, pp. 1–23, Jun. 2019, doi: 10.1145/3310336.

[26] M. Zafer, Y. Song, and K.-W. Lee, “Optimal bids for spot VMs in a
cloud for deadline constrained jobs,” in Proc. IEEE 5th Int. Conf. Cloud
Comput., Jun. 2012.

[27] A. Harlap, A. Tumanov, A. Chung, G. R. Ganger, and P. B. Gibbons,
“Proteus: Agile ML elasticity through tiered reliability in dynamic
resource markets,” in Proc. 12th Eur. Conf. Comput. Syst., Apr. 2017.

[28] K. Lee and M. Son, “DeepSpotCloud: Leveraging cross-region GPU
spot instances for deep learning,” in Proc. IEEE 10th Int. Conf. Cloud
Comput. (CLOUD), Jun. 2017, pp. 98–105.

[29] Y. Yan, Y. Gao, Y. Chen, Z. Guo, B. Chen, and T. Moscibroda, “TR-
Spark: Transient computing for big data analytics,” in Proc. 7th ACM
Symp. Cloud Comput., Oct. 2016, pp. 484–496.

[30] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2014.

[31] J. Wang and G. Joshi, “Adaptive communication strategies to achieve
the best error-runtime trade-off in local-update SGD,” in Proc. SysML
Conf., 2018. [Online]. Available: http://arxiv.org/abs/1810.08313

[32] H. Yun, H.-F. Yu, C.-J. Hsieh, S. V. N. Vishwanathan, and I. Dhillon,
“Nomad: Non-locking, stochastic multi-machine algorithm for asynchro-
nous and decentralized matrix completion,” in Proc. VLDB Endowment,
2014, pp. 975–986.

[33] J. Chen, X. Pan, R. Monga, and S. Bengio, “Revisiting distributed
synchronous SGD,” in Proc. ICLR Workshop Track, 2016.

[34] H. Yu and R. Jin, “On the computation and communication complexity
of parallel SGD with dynamic batch sizes for stochastic non-convex
optimization,” in Proc. ICML, vol. 97, PMLR, 2019, pp. 7174–7183.

[35] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM, vol. 56,
no. 2, pp. 74–80, Feb. 2013.

[36] Probability Density Function. [Online]. Available: https://en.
wikipedia.org/wiki/Probability_density_function

[37] Cumulative Distribution Function. [Online]. Available: https://en.
wikipedia.org/wiki/Cumulative_distribution_function

[38] How Spot Instances Work. [Online]. Available: https://docs.aws.
amazon.com/aws-technical-content/latest/cost-optimization-leveraging-
ec2-spot-instances/how-spot-instances-work.html

[39] S. Dutta, V. Cadambe, and P. Grover, “Short-Dot: Computing large linear
transforms distributedly using coded short dot products,” in Proc. Adv.
Neural Inf. Process. Syst. (NIPS), 2016, pp. 2100–2108.

[40] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” 2015, arXiv:1512.03385. [Online]. Available:
http://arxiv.org/abs/1512.03385

[41] G. E. H. A. Krizhevsky and I. Sutskever, “ImageNet classifica-
tion with deep convolutional neural networks,” in Proc. NIPS, 2012,
pp. 1097–1105.

[42] P. Moritz et al., “Ray: A distributed framework for emerging ai appli-
cations,” in Proc. USENIX OSDI, 2018, pp. 561–577.

[43] M. Abadi et al., “TensorFlow: A system for large-scale machine learn-
ing,” in Proc. USENIX OSDI, 2016, pp. 265–283.

[44] P. Goyal et al., “Accurate, large minibatch SGD: Training Ima-
geNet in 1 hour,” 2018, arXiv:1706.02677. [Online]. Available:
https://arxiv.org/abs/1706.02677

[45] H. Karimi, J. Nutini, and M. Schmidt, “Linear convergence of gradient
and proximal-gradient methods under the Polyak-Łojasiewicz condi-
tion,” in Proc. ECML PKDD, 2016, pp. 795–811.

[46] M. T. Chao and W. E. Strawderman, “Negative moments of positive
random variables,” J. Amer. Stat. Assoc., vol. 67, no. 338, pp. 429–431,
Jun. 1972.

Xiaoxi Zhang (Member, IEEE) received the B.E.
degree in electronics and information engineering
from the Huazhong University of Science and Tech-
nology in 2013 and the Ph.D. degree in computer
science from The University of Hong Kong in 2017.
She is currently an Associate Professor with the
School of Computer Science and Engineering, Sun
Yat-sen University. Before joining SYSU, she was
a Post-Doctoral Researcher with the Department
of Electrical and Computer Engineering, Carnegie
Mellon University. She is broadly interested in opti-

mization and algorithm design for networked systems, including cloud and
edge computing networks, NFV systems, and distributed machine learning
systems.

Jianyu Wang (Student Member, IEEE) received
the B.E. degree in electronic engineering from
Tsinghua University in 2017. He is currently pur-
suing the Ph.D. degree with Carnegie Mellon Uni-
versity, advised by Prof. Gauri Joshi and affiliated
with the Parallel Data Laboratory. He worked as
a Research Intern at Google Research and Face-
book AI Research in 2019 and 2020, respectively.
His research interests include federated learning,
distributed optimization, and systems for large-
scale machine learning. His research has been
supported by Qualcomm Ph.D. Fellowship.

Li-Feng Lee received the B.S. degree in computer
science from Tsinghua University in 2018 and the
M.S. degree in electrical and computer engineer-
ing from Carnegie Mellon University in 2020. His
research interests include cloud computing, and all
things big data.

Tom Yang received the B.S. degree in electrical
and computer engineering from the University of
California at Los Angeles, Los Angeles, CA, USA,
in 2019, and the M.S. degree in electrical and com-
puter engineering from Carnegie Mellon University
in 2020.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 21,2022 at 14:27:38 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/3310336

228 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 1, FEBRUARY 2022

Akansha Kalra received the B.E. degree (Hons.) in
electronics and communication from Panjab Univer-
sity, Chandigarh, and the M.S. degree from Carnegie
Mellon University (CMU) in 2020. She is also a
Research Intern with the Machine Learning Depart-
ment, CMU. Her research interests include creat-
ing intelligent embodied agents using reinforcement
learning and natural language.

Gauri Joshi (Member, IEEE) received the B.Tech.
and M.Tech. degrees in electrical engineering from
the Indian Institute of Technology (IIT) Bombay
in 2010, and the Ph.D. degree from MIT EECS
in June 2016. After her Ph.D., she worked as
a Research Staff Member at IBM T. J. Watson
Research Center. Since fall 2017, she has been
an Assistant Professor with the ECE Department,
Carnegie Mellon University. Her research spans dis-
tributed machine learning, large-scale parallel com-
puting, and information theory. Her awards and

honors include the NSF CAREER Award (2021), ACM Sigmetrics Best Paper
Award (2020), NSF CRII Award (2018), Best Thesis Prize in Computer
science at MIT (2012), and the Institute Gold Medal of IIT Bombay (2010).

Carlee Joe-Wong (Member, IEEE) received the
A.B. degree (magna cum laude) in mathematics,
and the M.A. and Ph.D. degrees in applied and
computational mathematics from Princeton Univer-
sity in 2011, 2013, and 2016, respectively. From
2013 to 2014, she was the Director of Advanced
Research at DataMi, a startup she co-founded from
her research on mobile data pricing. She is currently
the Robert E. Doherty Assistant Professor of electri-
cal and computer engineering with Carnegie Mellon
University. Her research interests lie in optimizing

various types of networked systems, including applications of machine learn-
ing and pricing to cloud computing, mobile/wireless networks, and ridesharing
networks. She received the NSF CAREER Award in 2018 and the ARO Young
Investigator Award in 2019.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 21,2022 at 14:27:38 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

